Project description:5-methyl-cytosine DNA methylation regulates gene expression and developmental programming in a broad range of eukaryotes. However, its presence and potential roles in ciliates, complex single-celled eukaryotes with germline-somatic genome specialization via nuclear dimorphism, are largely uncharted. While canonical cytosine methyltransferases have not been discovered in published ciliate genomes, recent studies performed in the stichotrichous ciliate Oxytricha trifallax suggest de novo cytosine methylation during macronuclear development. In this study, we applied bisfulfite genome sequencing, DNA mass spectrometry and antibody-based fluorescence detection to investigate the presence of DNA methylation in Paramecium tetraurelia. While the antibody-based methods suggest cytosine methylation, DNA mass spectrometry and bisulfite sequencing reveal that levels are actually below the limit of detection. Our results suggest that Paramecium does not utilize 5-methyl-cytosine DNA methylation as an integral part of its epigenetic arsenal.
Project description:Differential transcriptome of Paramecium tetraurelia strain 51 undergoing RNAi by feeding against ICL7a (as a control) and RDR3 for nine days.
Project description:Paramecium cells in stationary phase were treated for deciliation and total mRNA extracted at two time points (45 and 130 minutes) after deciliation. Keywords: Time course analysis of expression during reciliation