Project description:Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study the changes in the mutational landscape across populations during adaptation, we performed experimental evolutions on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining qPCR, array CGH, restriction, digestion and CHEF gels, and whole genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. Over a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that are driven by the coexistence of independent beneficial mutations. Segmental amplifications are rapidly gained under this selective pressure, including, common inverted amplifications containing the sulfate transporter gene SUL1. Detailed analysis of the populations uncovers a deep complexity where by multiple subpopulations arise and compete with each another. The most common trajectories to adaptation in these populations are incomplete soft sweeps, with adaptive variants replacing one another. These are CGH arrays. Each experiment compares the DNA content of an experimentally evolved strain with its ancestor.
Project description:microarray experiment to test the gene expression in long term lines of mutator and non-mutator yeast. Here we use an experimental evolution approach to investigate the conditions required for evolution of a reduction in mutation rate and the mechanisms by which populations tolerate the accumulation of deleterious mutations. We find that after ~6700 generations four out of eight experimental mutator lines had evolved a decreased mutation rate.
Project description:In some of the earliest uses of genome-wide gene-expression microarrays and array-based Comparative Genomic Hybridization (aCGH), a set of diploid yeasts that had undergone experimental evolution under aerobic glucose limitation was used to explore how gene expression and genome structure had responded to this selection pressure. To more deeply understand how adaptation to one environment might constrain or enhance performance in another we have now identified the adaptive mutations in this set of clones using whole-genome sequencing, and have assessed whether the evolved clones had become generalists or specialists by assaying their fitness under three contrasting growth environments: aerobic and anaerobic glucose limitation and aerobic acetate limitation. Additionally, evolved clones and their common ancestor were assayed for gene expression, biomass estimates and residual substrate levels under the alternative growth conditions. Relative fitnesses were evaluated by competing each clone against a common reference strain in each environment. Unexpectedly, we found that the evolved clones also outperformed their ancestor under strictly fermentative and strictly oxidative growth conditions. We conclude that yeasts evolving under aerobic glucose limitation become generalists for carbon limitation, as the mutations selected for in one environment are advantageous in others. High-throughput sequencing of the evolved clones uncovered mutations in genes involved in glucose sensing, signaling, and transport that in part explain these physiological phenotypes, with different sets of mutations found in independently-evolved clones. Earlier gene expression data from aerobic glucose-limited cultures had revealed a shift from fermentation towards respiration in all evolved clones explaining increased fitness in that condition. However, because the evolved clones also show higher fitness under strictly anaerobic conditions and under conditions requiring strictly respirative growth, this switch cannot be the sole source of adaptive benefit. Furthermore, because independently evolved clones are genetically distinct we conclude that there are multiple mutational paths leading to the generalist phenotype. Strain Name: Parental strain (CP1AB) or evolved clones (E1 - E5) Media: aerobic / anaerobic 36 hybridizations
Project description:In some of the earliest uses of genome-wide gene-expression microarrays and array-based Comparative Genomic Hybridization (aCGH), a set of diploid yeasts that had undergone experimental evolution under aerobic glucose limitation was used to explore how gene expression and genome structure had responded to this selection pressure. To more deeply understand how adaptation to one environment might constrain or enhance performance in another we have now identified the adaptive mutations in this set of clones using whole-genome sequencing, and have assessed whether the evolved clones had become generalists or specialists by assaying their fitness under three contrasting growth environments: aerobic and anaerobic glucose limitation and aerobic acetate limitation. Additionally, evolved clones and their common ancestor were assayed for gene expression, biomass estimates and residual substrate levels under the alternative growth conditions. Relative fitnesses were evaluated by competing each clone against a common reference strain in each environment. Unexpectedly, we found that the evolved clones also outperformed their ancestor under strictly fermentative and strictly oxidative growth conditions. We conclude that yeasts evolving under aerobic glucose limitation become generalists for carbon limitation, as the mutations selected for in one environment are advantageous in others. High-throughput sequencing of the evolved clones uncovered mutations in genes involved in glucose sensing, signaling, and transport that in part explain these physiological phenotypes, with different sets of mutations found in independently-evolved clones. Earlier gene expression data from aerobic glucose-limited cultures had revealed a shift from fermentation towards respiration in all evolved clones explaining increased fitness in that condition. However, because the evolved clones also show higher fitness under strictly anaerobic conditions and under conditions requiring strictly respirative growth, this switch cannot be the sole source of adaptive benefit. Furthermore, because independently evolved clones are genetically distinct we conclude that there are multiple mutational paths leading to the generalist phenotype. Strain Name: Parental strain (CP1AB) or evolved clones (E1 - E5) Media: aerobic / anaerobic