Project description:Cattle with subclinical endometritis (SCE) are sub-fertile, but there is no predictive or diagnosis tool for subclinical uterine disease. The hypothesis for this study was that endometrial inflammation is reflected in peripheral blood leucocytes gene expression. Transcriptome patterns in healthy cows and in cows with SCE at 45-55 days postpartum were evaluated using circulating white blood cells and endometrial biopsies samples collected from the same animals. Bioinformatics analyses of microarray-based transcriptional data identified gene profiles associated with distinct biological functions in circulating white blood cells and endometrium. In circulating white blood cells SCE promote a pro-inflammatory environment related to the activation of inflammation, whereas in the endometrium functions also related to tissue remodeling. Nineteen differentially expressed genes were altered both in circulating white blood cells and in the endometrium of SCE cows compared with healthy cows. Among these genes, transcript abundance of immune factors C3, C2, LTF, PF4 and TRAPPC13 were up-regulated in SCE cows at 45-55 days postpartum. Moreover, the mRNA expression of C3, CXCL8, LTF, TLR2 and TRAPPC13 was temporally regulated during the postpartum period in circulating white blood cells from healthy cows compared with SCE cows. This observation might indicate an advantageous activation of the immune system in healthy animals. The transcript abundance of these genes might also be used as an indicator for subsequent postpartum uterine health.
Project description:The liver of dairy cows naturally displays a series of metabolic adaptation during the periparturient period in response to the increasing nutrient requirement of lactation. The hepatic adaptation is partly regulated by insulin resistance and it is affected by the prepartal energy intake level of cows. We aimed to investigate the metabolic changes in the liver of dairy cows during the periparturient at gene expression level and to study the effect of prepartal energy level on the metabolic adaptation at gene expression level.B13:N13
Project description:Negative energy balance and splenic gene expression patterns in high yielding dairy cows during the early postpartum period [spleen]
Project description:Negative energy balance and hepatic gene expression patterns in high yielding dairy cows during the early postpartum period [liver]
Project description:Background: Physiological inflammation of the uterus postpartum is essential for the reparative processes of involution after calving. In the majority of cows, this inflammation is resolved and homeostasis is restored. However, in a significant subset, inflammation persists and contributes to tissue damage, pathology and subfertility. Transcriptomic differences of immune genes between cattle that resolve inflammation and those that develop uterine disease have been detected as early as 7 days postpartum (DPP) suggesting that the host immune response plays an important role in disease outcome. Results: Here, we extensively characterise the immune response at the transcriptomic level in endometrial epithelial cells from post-partum dairy cows phenotyped for both clinical and sub-clinical forms of uterine disease. We address the hypothesis that excessive expression of endometrial inflammatory molecules contributes to development of endometritis. Classification of cattle (n=112) as healthy or with uterine disease (purulent vaginal discharge; PVD and cytological endometritis; CYTO) was based on vaginal mucus score and >18% polymorphonuclear cell infiltrate into the endometrium at 21 DPP. RNA-seq analysis of endometrial epithelial cells collected using cytobrushes identified differential expression of 294 genes (FDR <0.05) between cows that subsequently resolved inflammation (n=10) and those that developed disease (n=20). Pathway over-representation analysis of differentially expressed genes (DEG) identified significant changes in immune-related pathways, including the NOD-like receptor signalling pathway, cytokine-cytokine receptor interaction pathway and the Toll-like receptor signalling pathway which were up-regulated in cattle that subsequently developed disease. The majority of the DEG were upregulated in cows that developed PVD, and included all genes upregulated in CYTO cows, suggesting a core inflammatory gene signature early post-partum contributes to the onset of uterine disease. This inflammatory signature was validated by qPCR in an independent group of cows (n=56) and included upregulation of pro-inflammatory genes (including TLR2, TLR4, NLRP3, IL1A, IL1B, IL8, and S100A8) at day 7 postpartum in cows that failed to resolve inflammation. Conclusions: Despite a large amount of inter-animal heterogeneity, these results suggest that excessive activation and inappropriate regulation of the inflammatory response early postpartum is a key feature of the subsequent development of uterine disease. Keywords: Endometritis, Inflammation, Transcriptome, Next generation sequencing, Dairy cattle, Uterine involution, Immune response
Project description:The Toll-like receptor (TLR) and peptidoglycan recognition protein 1 (PGLYRP1) genes play key roles in the innate immune systems of mammals. While the TLRs recognize a variety of invading pathogens and induce innate immune responses, PGLYRP1 is directly microbicidal. We used custom allele-specific assays to genotype and validate 220 diallelic variants, including 54 nonsynonymous SNPs in 11 bovine innate immune genes (TLR1-TLR10, PGLYRP1) for 37 cattle breeds. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and we were unable to differentiate between the specialized B. t. taurus beef and dairy breeds, despite an average polymorphism density of one locus per 219 bp. Ninety-nine tagSNPs and one tag insertion-deletion polymorphism were sufficient to predict 100% of the variation at all 11 innate immune loci in both subspecies and their hybrids, whereas 58 tagSNPs captured 100% of the variation at 172 loci in B. t. taurus. PolyPhen and SIFT analyses of nonsynonymous SNPs encoding amino acid replacements indicated that the majority of these substitutions were benign, but up to 31% were expected to potentially impact protein function. Several diversity-based tests provided support for strong purifying selection acting on TLR10 in B. t. taurus cattle. These results will broadly impact efforts related to bovine translational genomics.
Project description:BackgroundWe present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS) only assembly used for many other animal genomes including the rhesus macaque.ResultsThe assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information.Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5%) of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly.ConclusionThe biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.
Project description:Proteins are the major constituents of muscle and are key molecules regulating the metabolic changes during conversion of muscle to meat. Brazil is one of the largest exporters of beef and most Brazilian cattle are composed by zebu (Nellore) genotype. Bos indicus beef is generally leaner and tougher than Bos taurus such as Angus. The aim of this study was to compare the muscle proteomic and phosphoproteomic profile of Angus and Nellore. Seven animals of each breed previously subjected the same growth management were confined for 84 days. Proteins were extracted from Longissimus lumborum samples collected immediately after slaughter and separated by two-dimensional electrophoresis. Pro-Q Diamond stain was used in phosphoproteomics. Proteins identification was performed using matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Tropomyosin alpha-1 chain, troponin-T, myosin light chain-1 fragment, cytoplasmic malate dehydrogenase, alpha-enolase and 78 kDa glucose-regulated protein were more abundant in Nellore, while myosin light chain 3, prohibitin, mitochondrial stress-70 protein and heat shock 70 kDa protein 6 were more abundant in Angus (P<0.05). Nellore had higher phosphorylation of myosin regulatory light chain-2, alpha actin-1, triosephosphate isomerase and 14-3-3 protein epsilon. However, Angus had greater phosphorylation of phosphoglucomutase-1 and troponin-T (P<0.05). Therefore, proteins involved in contraction and muscle organization, myofilaments expressed in fast or slow-twitch fibers and heat shock proteins localized in mitochondria or sarcoplasmic reticulum and involved in cell flux of calcium and apoptosis might be associated with differences in beef quality between Angus and Nellore. Furthermore, prohibitin appears to be a potential biomarker of intramuscular fat in cattle. Additionally, differences in phosphorylation of myofilaments and glycolytic enzymes could be involved with differences in muscle contraction force, susceptibility to calpain, apoptosis and postmortem glycolysis, which might also be related to differences in beef quality among Angus and Nellore.