Project description:Bulk RNA-seq was performed on murine Lin-Sca+Kit+ bone marrow cells from a transgenic SCLtTA/BCR-ABL (DTG) mouse BM cells (CD45.2) to understand the molecular consequences of BCR-ABL1 expression on the global mRNA programme of these cells.
Project description:Leukemic splenocytes from these commercial transgenic mice that developed fatal leukemia with massive splenomegaly were isolated at the time of the necropsy and subjected to gene expression profiling and phosphoprotein profiling in side by side comparison with CD22DE12-Tg BPL or CD22DE12_BCR-ABL double transgenic cells. Mouse leukemia cells were isolated from markedly enlarged spleens of CD22DE12-Tg (N=2), BCR-ABL-Tg (N=2), Eµ-MYC Tg mice (N=2) and Splenocytes from wildtype healthy C57BL/6 mice served as controls (N=4).
Project description:BCR-Abl is a driver oncogene that causes chronic myeloid leukemia and a subset of acute lymphoid leukemias. Although tyrosine kinase inhibitors provide an effective treatment for these diseases, they generally do not kill leukemic stem cells. Leukemic stem cells are cancer-initiating cells that compete with normal hematopoietic stem cells for the bone marrow niche. Using BCR-Abl as a model oncogene, we performed a drug screen based on competition between isogenic untransformed cells and BCR-Abl-transformed cells, and identified several compounds that selectively target BCR-Abl-transformed cells. Systems-level analysis of one of these novel compounds, DJ34, revealed that it induced depletion of c-Myc and activation of p53. c-Myc depletion occurred in a wide range of tumor types, including leukemia, lymphoma, lung, glioblastoma and breast cancer. Further analyses revealed that DJ34 interferes with c-Myc synthesis at the level of transcription, and we provide data showing that DJ34 is a DNA intercalator and topoisomerase II inhibitor. Physiologically, DJ34 induced apoptosis, cell cycle arrest and cell differentiation, and primary leukemic stem cells were particularly sensitive to DJ34. Taken together, we have identified a novel compound that dually targets c-Myc and p53 in a wide variety of cancers, and with particularly strong activity against leukemic stem cells.
Project description:MiR-142 is dynamically expressed and plays a regulatory role in hematopoiesis. Based on the simple observation that miR-142 levels are significantly lower in CD34+CD38- cells from blast crisis (BC) chronic myeloid leukemia (CML). CML patients compared with chronic phase (CP) CML patients (p=0.002), we hypothesized that miR-142 deficit plays a role in BC transformation. To test this hypothesis, we generated a miR-142 KO BCR-ABL (i.e., miR-142−/−BCR-ABL) mouse by crossing a miR-142−/− mouse with a miR-142+/+BCR-ABL mouse. While the miR-142+/+BCR-ABL mice developed and died of CP CML, the miR-142−/−BCR-ABL mice developed a BC-like phenotype in the absence of any other acquired gene mutations and died significantly sooner than miR-142+/+BCR-ABL CP controls (p=0.001). Leukemic stem cell (LSC)-enriched Lineage-Sca-1+c-Kit+ cells (LSKs) from diseased miR-142−/−BCR-ABL mice transplanted into congenic recipients, recapitulated the BC features thereby suggesting stable transformation of CP-LSCs into BC-LSCs in the miR-142 KO CML mouse. Single cell (sc) RNA-seq profiling showed that miR-142 deficit changed the cellular landscape of the miR-142−/−BCR-ABL LSKs compared with miR-142+/+BCR-ABL LSKs with expansion of myeloid-primed and loss of lymphoid-primed factions. Bulk RNA-seq analyses along with unbiased metabolomic profiling and functional metabolic assays demonstrated enhanced fatty acid β-oxidation (FAO) and oxidative phosphorylation (OxPhos) in miR-142−/−BCR-ABL LSKs vs miR-142+/+BCR-ABL LSKs. MiR-142 deficit enhanced FAO in miR-142−/−BCR-ABL LSKs by increasing the expression of CPT1A and CPT1B, that controls the cytosol-to-mitochondrial acyl-carnitine transport, a critical step in FAO. MiR-142 deficit also enhanced OxPhos in miR-142−/−BCR-ABL LSKs by increasing mitochondrial fusion and activity. As the homeostasis and activity of LSCs depend on higher levels of these oxidative metabolism processes, we then postulate that miR-142 deficit is a potentially druggable target for BC-LSCs. To this end, we developed a novel CpG-miR-142 mimic oligonucleotide (ODN; i.e., CpG-M-miR-142) that corrected the miR-142 deficit and alone or in combination with a tyrosine kinase inhibitor (TKI) significantly reduced LSC burden and prolonged survival of miR-142−/−BCR-ABL mice. The results from murine models were validated in BC CD34+CD38- primary blasts and patient-derived xenografts (PDXs). In conclusion, an acquired miR-142 deficit sufficed in transforming CP-LSCs into BC-LSCs, via enhancement of bioenergetic oxidative metabolism in absence of any additional gene mutations, and likely represent a novel therapeutic target in BC CML.