Project description:Dynamic changes to the epigenome mediate key neurobiological and cognitive processes in the central nervous system, and also play a role in transcriptional regulation during brain development. Although the importance of DNA methylation in brain development is highlighted by the neurodevelopmental deficits associated with mutations in genes including methyl-CpG binding protein 2 (MECP2), our knowledge about the specific methylomic trajectories associated with human neurodevelopment is extremely limited. Here we report an analysis of genome-wide patterns of DNA methylation in 179 human fetal cortex samples. Bisulphite converted DNA from 179 human brain samples was hybridized to the Illumina 450K Human Methylation Beadchip.
Project description:Dynamic changes to the epigenome mediate key neurobiological and cognitive processes in the central nervous system, and also play a role in transcriptional regulation during brain development. Although the importance of DNA methylation in brain development is highlighted by the neurodevelopmental deficits associated with mutations in genes including methyl-CpG binding protein 2 (MECP2), our knowledge about the specific methylomic trajectories associated with human neurodevelopment is extremely limited. Here we report an analysis of genome-wide patterns of DNA methylation in 179 human fetal brain samples.
Project description:Background: Schizophrenia is a severe neuropsychiatric disorder that is hypothesized to result from disturbances in early brain development, and there is mounting evidence to support a role for developmentally-regulated epigenetic variation in the molecular etiology of the disorder. Here, we describe a systematic study of schizophrenia-associated methylomic variation in the adult brain and its relationship to changes in DNA methylation across human fetal brain development. Results: We profile methylomic variation in matched prefrontal cortex and cerebellum brain tissue from schizophrenia patients and controls, identifying disease-associated differential DNA methylation at multiple loci, particularly in the prefrontal cortex, and confirming these differences in an independent set of adult brain samples. Our data reveal discrete modules of co-methylated loci associated with schizophrenia that are enriched for genes involved in neurodevelopmental processes and include loci implicated by genetic studies of the disorder. Methylomic data from human fetal cortex samples, spanning 23 to 184 days post-conception, indicates that disease-associated differentially methylated positions are significantly enriched for loci at which DNA methylation is dynamically altered during human fetal brain development. Conclusions: Our data support the hypothesis that schizophrenia has an important early neurodevelopmental component, and suggest that epigenetic mechanisms may mediate these effects. 33 post-mortem brain (prefrontal cortex) samples (18 schizophrenia cases and 15 controls) were obtained from Douglas Bell-Canada Brain Bank (DBCBB), Montreal, Canada. Bisulfite converted DNA from these samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip v1.0.
Project description:Background: Schizophrenia is a severe neuropsychiatric disorder that is hypothesized to result from disturbances in early brain development, and there is mounting evidence to support a role for developmentally-regulated epigenetic variation in the molecular etiology of the disorder. Here, we describe a systematic study of schizophrenia-associated methylomic variation in the adult brain and its relationship to changes in DNA methylation across human fetal brain development. Results: We profile methylomic variation in matched prefrontal cortex and cerebellum brain tissue from schizophrenia patients and controls, identifying disease-associated differential DNA methylation at multiple loci, particularly in the prefrontal cortex, and confirming these differences in an independent set of adult brain samples. Our data reveal discrete modules of co-methylated loci associated with schizophrenia that are enriched for genes involved in neurodevelopmental processes and include loci implicated by genetic studies of the disorder. Methylomic data from human fetal cortex samples, spanning 23 to 184 days post-conception, indicates that disease-associated differentially methylated positions are significantly enriched for loci at which DNA methylation is dynamically altered during human fetal brain development. Conclusions: Our data support the hypothesis that schizophrenia has an important early neurodevelopmental component, and suggest that epigenetic mechanisms may mediate these effects. Prefrontal cortex (PFC) and cerebellum samples were obtained from 46 brains archived in the London Brain Bank for Neurodegenerative Disorders (LBBND). Of these 22 were schizophrenia cases, ands of the cases 12 were male.
Project description:Background: Schizophrenia is a severe neuropsychiatric disorder that is hypothesized to result from disturbances in early brain development, and there is mounting evidence to support a role for developmentally-regulated epigenetic variation in the molecular etiology of the disorder. Here, we describe a systematic study of schizophrenia-associated methylomic variation in the adult brain and its relationship to changes in DNA methylation across human fetal brain development. Results: We profile methylomic variation in matched prefrontal cortex and cerebellum brain tissue from schizophrenia patients and controls, identifying disease-associated differential DNA methylation at multiple loci, particularly in the prefrontal cortex, and confirming these differences in an independent set of adult brain samples. Our data reveal discrete modules of co-methylated loci associated with schizophrenia that are enriched for genes involved in neurodevelopmental processes and include loci implicated by genetic studies of the disorder. Methylomic data from human fetal cortex samples, spanning 23 to 184 days post-conception, indicates that disease-associated differentially methylated positions are significantly enriched for loci at which DNA methylation is dynamically altered during human fetal brain development. Conclusions: Our data support the hypothesis that schizophrenia has an important early neurodevelopmental component, and suggest that epigenetic mechanisms may mediate these effects.
Project description:Background: Schizophrenia is a severe neuropsychiatric disorder that is hypothesized to result from disturbances in early brain development, and there is mounting evidence to support a role for developmentally-regulated epigenetic variation in the molecular etiology of the disorder. Here, we describe a systematic study of schizophrenia-associated methylomic variation in the adult brain and its relationship to changes in DNA methylation across human fetal brain development. Results: We profile methylomic variation in matched prefrontal cortex and cerebellum brain tissue from schizophrenia patients and controls, identifying disease-associated differential DNA methylation at multiple loci, particularly in the prefrontal cortex, and confirming these differences in an independent set of adult brain samples. Our data reveal discrete modules of co-methylated loci associated with schizophrenia that are enriched for genes involved in neurodevelopmental processes and include loci implicated by genetic studies of the disorder. Methylomic data from human fetal cortex samples, spanning 23 to 184 days post-conception, indicates that disease-associated differentially methylated positions are significantly enriched for loci at which DNA methylation is dynamically altered during human fetal brain development. Conclusions: Our data support the hypothesis that schizophrenia has an important early neurodevelopmental component, and suggest that epigenetic mechanisms may mediate these effects.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Organoids derived from human pluripotent stem cells recapitulate the early three-dimensional organization of human brain, but whether they establish the epigenomic and transcriptional programs essential for brain development is unknown. We compared epigenomic and gene regulatory features in cerebral organoids and human fetal brain, using genome-wide, base resolution DNA methylome and transcriptome sequencing. Transcriptomic dynamics in organoids faithfully modeled gene expression trajectories in early-to-mid human fetal brains. We found that early non-CG methylation accumulation at super-enhancers in both fetal brain and organoids marks forthcoming transcriptional repression in the fully developed brain. 74% of 35,627 demethylated regions identified during organoid differentiation overlapped with fetal brain regulatory elements. Interestingly, pericentromeric repeats showed widespread demethylation in multiple types of in vitro human neural differentiation models but not in fetal brain. Our study reveals that organoids recapitulate many epigenomic features of mid-fetal human brain and also identified novel non-CG methylation signatures of brain development.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.