Project description:Background: Microorganisms are the major cause of food spoilage during storage, processing and distribution. Pseudomonas fluorescens is a typical spoilage bacterium that contributes to a large extent to the spoilage process of proteinaceous food. RpoS is considered an important global regulator involved in stress survival and virulence in many pathogens. Our previous work revealed that RpoS contributed to the spoilage activities of P. fluorescens by regulating resistance to different stress conditions, extracellular acylated homoserine lactone (AHL) levels, extracellular protease and total volatile basic nitrogen (TVB-N) production. However, RpoS-dependent genes in P. fluorescens remained undefined. Results: RNA-seq transcriptomics analysis combined with quantitative proteomics analysis basing on multiplexed isobaric tandem mass tag (TMT) labeling was performed for the P. fluorescens wild-type strain UK4 and its derivative carrying a rpoS mutation. A total of 375 differentially expressed genes (DEGs) and 212 differentially expressed proteins (DEPs) were identified in these two backgrounds. The DGEs were further verified by qRT-PCR tests, and the genes directly regulated by RpoS were confirmed by 5’-RACE-PCR sequencing. The combining transcriptome and proteome analysis revealed a role of this regulator in several cellular processes, including polysaccharide metabolism, intracellular secretion and extracellular structures, cell well biogenesis, stress responses, ammonia and biogenic amine production, which may contribute to biofilm formation, stress resistance and spoilage activities of P. fluorescens. Moreover, in this work we indeed observed that RpoS contributed to the production of the macrocolony biofilm’s matrix.
Project description:DNA microarray technology was used to survey changes in gene expression in P. fluorescens after mitomycin C (MMC) treatment. As expected, genes associated with the SOS response were upregulated. These include genes coding the recombination involved protein RecA, DNA repair protein RecN, excinuclease ABC subunit A UvrA, and the LexA repressor protein. The expression profile was similar to that which had been shown for E. coli after MMC treatment. Interestingly, expression of 33 bacteriophage-like genes was upregulated two hours after MMC treatment. Those genes are clustered in the chromosome. This result suggests that MMC may induce a prophage resident in the P. fluorescens genome. However, no phage particles were detected in a preparation of P. fluorescens strain DC454 that had been treated with MMC using transmission electron microscopy, and the same preparation failed to produce phage plaques on lawns of any of 10 different Pseudomonas strains tested, suggesting that the 33 bacteriophage-like gene cluster represents a defective prophage. Keywords: time course, stress response
Project description:This SuperSeries is composed of the following subset Series: GSE29319: Iron-starvation effect on transcriptome of Pseudomonas fluorescens Pf-5: iron(II) chloride GSE29320: Iron-starvation effect on transcriptome of Pseudomonas fluorescens Pf-5: iron(III) chloride Refer to individual Series
Project description:Whole genome gene expression study comparing Pseudomonas fluorescens Pf0-1 (Wt) relative to a delta-pst mutant (deletion of the pstSCAB operon) that consitutively expresses the Pho regulon Mutants used in this study are further described in Monds, R.D. Newell, P.D., Gross, R.H., O'Toole, G.A. (2007) Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Mol. Microbiol. 63(3): 656-679
Project description:This SuperSeries is composed of the following subset Series: GSE33907: Tannic acid (20 µg/ mL) treatment effect on transcriptome of Pseudomonas fluorescens Pf-5 GSE33908: Tannic acid (160 µg/ mL) treatment effect on transcriptome of Pseudomonas fluorescens Pf-5 Refer to individual Series
Project description:Whole genome gene expression study comparing Pseudomonas fluorescens Pf0-1 (Wt) relative to a delta-pst mutant (deletion of the pstSCAB operon) that consitutively expresses the Pho regulon Mutants used in this study are further described in Monds, R.D. Newell, P.D., Gross, R.H., O'Toole, G.A. (2007) Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Mol. Microbiol. 63(3): 656-679 A four chip study using total RNA recovered from two independent wild-type cultures of wild type strain Pseudomonas fluorescens Pf0-1 and two independent cultures of Pseudomonas fluorescens Pf0-1 delta pst mutant (deletion of the pstSCAB operon). Each chip measures the expression level of 5733 open reading frames (ORFs) genes from Pseudomonas fluorescens Pf0-1 (Refseq: NC_007492) with twenty 60-mer postive match (PM) probes per gene, with three-fold technical redundancy.