Project description:Acetaminophen is a widely used antipyretic and analgesic drug, and its overdose is the leading cause of drug-induced acute liver failure. This study aimed to investigate the effect and mechanism of Lacticaseibacillus casei Shirota (LcS), an extensively used and highly studied probiotic, on acetaminophen-induced acute liver injury. C57BL/6 mice were gavaged with LcS suspension or saline once daily for 7 days before the acute liver injury was induced via intraperitoneal injection of 300 mg/kg acetaminophen. The results showed that LcS significantly decreased acetaminophen-induced liver and ileum injury, as demonstrated by reductions in the increases in aspartate aminotransferase, total bile acids, total bilirubin, indirect bilirubin and hepatic cell necrosis. Moreover, LcS alleviated the acetaminophen-induced intestinal mucosal permeability, elevation in serum IL-1α and lipopolysaccharide, and decreased levels of serum eosinophil chemokine (eotaxin) and hepatic glutathione levels. Furthermore, analysis of the gut microbiota and metabolome showed that LcS reduced the acetaminophen-enriched levels of Cyanobacteria, Oxyphotobacteria, long-chain fatty acids, cholesterol and sugars in the gut. Additionally, the transcriptome and proteomics showed that LcS mitigated the downregulation of metabolism and immune pathways as well as glutathione formation during acetaminophen-induced acute liver injury. This is the first study showing that pretreatment with LcS alleviates acetaminophen-enriched acute liver injury, and it provides a reference for the application of LcS.
Project description:Life stress can shorten lifespan and increase risk for aging-related diseases, but the biology underlying this phenomenon remains unclear. We assessed the effect of chronic stress on cellular senescence — a hallmark of aging. Exposure to restraint stress, a psychological non-social stress model, increased p21Cip1 exclusively in the brains of male, but not female mice, and in a p16Ink4a-independent manner. Conversely, exposure to chronic subordination stress (CSS; males only were tested) increased key senescent cell (SNC) markers in peripheral blood mononuclear cells, adipose tissue and brain, in a p16Ink4a-dependent manner. p16Ink4a-positive cells in the brain of CSS-exposed mice were primarily hippocampal and cortical neurons with evidence of DNA damage that could be reduced by p16Ink4a cell clearance. Clearance of p16Ink4a-positive cells was not sufficient to ameliorate the adverse effects of social stress on measured metrics of healthspan. Overall, our findings indicate that social stress induces an organ-specific and p16Ink4a-dependent accumulation SNCs, illuminating a fundamental way by which the social environment can contribute to aging.
Project description:The aim of this study was to assess whether chronic treatment with RPV can modulate the progression of chronic liver disease, especially of non-alcoholic fatty liver disease (NAFLD), through a nutritional model in wild-type mice Mice were daily treated with RPV (p.o.) and fed with normal or high fat diet during 3 months to induce fatty liver disease
Project description:Chronic stress is a key risk factor for a variety of diseases, but the determinants of individual stress susceptibility are still unclear. Using a recently developed paradigm for chronic social stress in mice we identified animals that were resistant or susceptible to the persistent effects of chronic stress exposure. Gene expression analysis in laser-microdissected hippocampal subfields of both groups revealed differentially regulated AMPA receptor subunits, which might affect the susceptibility of an individual to chronic social stress. To test this hypothesis, animals were treated with the AMPA receptor potentiator LY451646 or vehicle during the last 4 weeks of chronic stress exposure. Enhanced AMPA receptor function in chronically stressed animals ameliorated the lasting effects of the chronic stress exposure on physiological, neuroendocrine and behavioural parameters. Our data suggest that differences in AMPA receptor function may underlie individual stress susceptibility and support AMPA receptor potentiators as potential medication in stress-related diseases. Keywords: phenotype, chronic stress, AMPA
Project description:Chronic stress exposure in adolescence can lead to a lasting change in stress responsiveness later in life and is associated with increased mental health issues in adulthood. Here we investigate whether the Chronic Social Instability (CSI) paradigm in mice influences the molecular response to novel acute stressors
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.