Project description:Runx2 and Axin2 regulate skeletal development. We recently determined that Axin2 and Runx2 molecularly interact in differentiating osteoblasts to regulate intramembranous bone formation, but the relationship between these factors in endochondral bone formation was unresolved. To address this, we examined the effects of Axin2 deficiency on the cleidocranial dysplasia (CCD) phenotype of Runx2+/- mice, focusing on skeletal defects attributed to improper endochondral bone formation. Axin2 deficiency unexpectedly exacerbated calvarial components of the CCD phenotype in the Runx2+/- mice; the endocranial layer of the frontal suture, which develops by endochondral bone formation, failed to mineralize in the Axin2-/-:Runx2+/-mice, resulting in a cartilaginous, fibrotic and larger fontanel than observed in Runx2+/- mice. Transcripts associated with cartilage development (e.g., Acan, miR140) were expressed at higher levels, whereas blood vessel morphogenesis transcripts (e.g., Slit2) were suppressed in Axin2-/-:Runx2+/-calvaria. Cartilage maturation was impaired, as primary chondrocytes from double mutant mice demonstrated delayed differentiation and produced less calcified matrix in vitro. The genetic dominance of Runx2 was also reflected during endochondral fracture repair, as both Runx2+/- and double mutant Axin2-/-:Runx2+/- mice had enlarged fracture calluses at early stages of healing. However, by the end stages of fracture healing, double mutant animals diverged from the Runx2+/- mice, showing smaller calluses and increased torsional strength indicative of more rapid end stage bone formation as seen in the Axin2-/- mice. Taken together, our data demonstrate a dominant role for Runx2 in chondrocyte maturation, but implicate Axin2 as an important modulator of the terminal stages of endochondral bone formation.
Project description:Runx2 and Axin2 regulate skeletal development. We recently determined that Axin2 and Runx2 molecularly interact in differentiating osteoblasts to regulate intramembranous bone formation, but the relationship between these factors in endochondral bone formation was unresolved. To address this, we examined the effects of Axin2 deficiency on the cleidocranial dysplasia (CCD) phenotype of Runx2+/- mice, focusing on skeletal defects attributed to improper endochondral bone formation. Axin2 deficiency unexpectedly exacerbated calvarial components of the CCD phenotype in the Runx2+/- mice; the endocranial layer of the frontal suture, which develops by endochondral bone formation, failed to mineralize in the Axin2-/-:Runx2+/-mice, resulting in a cartilaginous, fibrotic and larger fontanel than observed in Runx2+/- mice. Transcripts associated with cartilage development (e.g., Acan, miR140) were expressed at higher levels, whereas blood vessel morphogenesis transcripts (e.g., Slit2) were suppressed in Axin2-/-:Runx2+/-calvaria. Cartilage maturation was impaired, as primary chondrocytes from double mutant mice demonstrated delayed differentiation and produced less calcified matrix in vitro. The genetic dominance of Runx2 was also reflected during endochondral fracture repair, as both Runx2+/- and double mutant Axin2-/-:Runx2+/- mice had enlarged fracture calluses at early stages of healing. However, by the end stages of fracture healing, double mutant animals diverged from the Runx2+/- mice, showing smaller calluses and increased torsional strength indicative of more rapid end stage bone formation as seen in the Axin2-/- mice. Taken together, our data demonstrate a dominant role for Runx2 in chondrocyte maturation, but implicate Axin2 as an important modulator of the terminal stages of endochondral bone formation.
Project description:Runx2 and Axin2 regulate skeletal development. We recently determined that Axin2 and Runx2 molecularly interact in differentiating osteoblasts to regulate intramembranous bone formation, but the relationship between these factors in endochondral bone formation was unresolved. To address this, we examined the effects of Axin2 deficiency on the cleidocranial dysplasia (CCD) phenotype of Runx2+/- mice, focusing on skeletal defects attributed to improper endochondral bone formation. Axin2 deficiency unexpectedly exacerbated calvarial components of the CCD phenotype in the Runx2+/- mice; the endocranial layer of the frontal suture, which develops by endochondral bone formation, failed to mineralize in the Axin2-/-:Runx2+/-mice, resulting in a cartilaginous, fibrotic and larger fontanel than observed in Runx2+/- mice. Transcripts associated with cartilage development (e.g., Acan, miR140) were expressed at higher levels, whereas blood vessel morphogenesis transcripts (e.g., Slit2) were suppressed in Axin2-/-:Runx2+/-calvaria. Cartilage maturation was impaired, as primary chondrocytes from double mutant mice demonstrated delayed differentiation and produced less calcified matrix in vitro. The genetic dominance of Runx2 was also reflected during endochondral fracture repair, as both Runx2+/- and double mutant Axin2-/-:Runx2+/- mice had enlarged fracture calluses at early stages of healing. However, by the end stages of fracture healing, double mutant animals diverged from the Runx2+/- mice, showing smaller calluses and increased torsional strength indicative of more rapid end stage bone formation as seen in the Axin2-/- mice. Taken together, our data demonstrate a dominant role for Runx2 in chondrocyte maturation, but implicate Axin2 as an important modulator of the terminal stages of endochondral bone formation. 4 mice per genotype X 4 genotypes: wildtype (WT), Runx2+/- (R-Het), Axin2-/- (A-KO), Axin2-/-:Runx2+/- (A-KO:R-Het). Total = 16 samples
Project description:Runx2 and Axin2 regulate skeletal development. We recently determined that Axin2 and Runx2 molecularly interact in differentiating osteoblasts to regulate intramembranous bone formation, but the relationship between these factors in endochondral bone formation was unresolved. To address this, we examined the effects of Axin2 deficiency on the cleidocranial dysplasia (CCD) phenotype of Runx2+/-M-BM- mice, focusing on skeletal defects attributed to improper endochondral bone formation. Axin2 deficiency unexpectedly exacerbated calvarial components of the CCD phenotype in the Runx2+/-M-BM- mice; the endocranial layer of the frontal suture, which develops by endochondral bone formation, failed to mineralize in the Axin2-/-:Runx2+/-mice, resulting in a cartilaginous, fibrotic and larger fontanel than observed in Runx2+/-M-BM- mice. Transcripts associated with cartilage development (e.g., Acan, miR140) were expressed at higher levels, whereas blood vessel morphogenesis transcripts (e.g., Slit2) were suppressed in Axin2-/-:Runx2+/-calvaria. Cartilage maturation was impaired, as primary chondrocytes from double mutant mice demonstrated delayed differentiation and produced less calcified matrix in vitro. The genetic dominance of Runx2 was also reflected during endochondral fracture repair, as both Runx2+/-M-BM- and double mutant Axin2-/-:Runx2+/-M-BM- mice had enlarged fracture calluses at early stages of healing. However, by the end stages of fracture healing, double mutant animals diverged from the Runx2+/-M-BM- mice, showing smaller calluses and increased torsional strength indicative of more rapid end stage bone formation as seen in the Axin2-/-M-BM- mice. Taken together, our data demonstrate a dominant role for Runx2 in chondrocyte maturation, but implicate Axin2 as an important modulator of the terminal stages of endochondral bone formation. 4 mice per genotype X 4 genotypes: wildtype (WT), Runx2+/- (R-Het), Axin2-/- (A-KO), Axin2-/-:Runx2+/- (A-KO:R-Het). Total = 16 samples
Project description:We sequenced mRNA from 12 single newborn mouse calvaria tissues ( from 3 control and 3 Med23-/- cKO mice from a litter; 3 wildtype and 3 Runx2+/- mice from another litter) to investigate the correlation between Med23 and Runx2 in terms of affect on the mRNA level by their deficiencies. We find there is a positiove correlation in gobal gene expression affected by defiencies of the two genes.
Project description:Because insufficiency of the Runt-related transcription factor 2 (Runx2) limits skeletal growth, there is a great deal of effort to activate Runx2 for clinical use. In this study, we found that MS-275, the class I-specific HDAC inhibitor, activates Runx2 both transcriptionally and translationally. Therefore, we performed NGS analysis to gain accurate patterns of gene expression in mouse calvaria tissue through MS-275 administration. As a result, we could get insight that treatment of MS-275 increases genes related with osteoblast differentiation and cell proliferation, and decreases genes in field of causing apoptosis.