Project description:Activation of the STING (Stimulator of Interferon Genes) pathway by microbial or self-DNA, as well as cyclic di nucleotides (CDN), results in the induction of numerous genes that suppress pathogen replication and facilitate adaptive immunity. However, sustained gene transcription is rigidly prevented to avoid lethal STING-dependent pro-inflammatory disease by mechanisms that remain unknown. We demonstrate here that after autophagy-dependent STING delivery of TBK1 (TANK-binding kinase 1) to endosomal/lysosomal compartments and activation of transcription factors IRF3 (interferon regulatory factors 3) and NF-κB (nuclear factor kappa beta), that STING is subsequently phosphorylated by serine/threonine UNC-51-like kinase (ULK1/ATG1) and IRF3 function is suppressed. ULK1 activation occurred following disassociation from its repressor adenine monophosphate activated protein kinase (AMPK), and was elicited by CDN’S generated by the cGAMP synthase, cGAS. Thus, while CDN’s may initially facilitate STING function, they subsequently trigger negative-feedback control of STING activity, thus preventing the persistent transcription of innate immune genes. Total RNA obtained from primary STING deficient mouse embryonic fibroblast reconstituted with mSTING (W), S365A variant (A), or S365D variant (D). These cells were transfected with dsDNA (ISD) for 3 hours.
Project description:MyD88 may play a direct role in STING-dependent signaling, or alternatively that STING-dependent pro-inflammatory cytokines may require downstream MyD88-dependent signaling to exert their effect. To determine this, we treated STING or MyD88-deficient murine embryonic fibroblasts (MEFs), bone marrow derived macrophages (BMDM) or dendritic cells (BMDC) with exogenous CDN’s or cytosolic dsDNA (ISD) which triggers STING-signaling and type I IFN production.
Project description:Chronic stimulation of innate immune pathways by microbial agents or damaged tissue is known to promote inflammation-driven tumorigenesis by unclarified mechanisms1-3. Here we demonstrate that mutagenic 7,12-dimethylbenz(a)anthracene (DMBA), etoposide or cisplatin induces nuclear DNA leakage into the cytosol to intrinsically activate STING (Stimulator of Interferon Genes) dependent cytokine production. Inflammatory cytokine levels were subsequently augmented in a STING-dependent extrinsic manner by infiltrating phagocytes purging dying cells. Consequently, STING-/- mice, or wild type mice adoptively transferred with STING-/- bone marrow, were almost completely resistant to DMBA-induced skin carcinogenesis compared to their wild type counterparts. Our data emphasizes, for the first time, a role for STING in the induction of cancer, sheds significant insight into the causes of inflammation-driven carcinogenesis, and may provide therapeutic strategies to help prevent malignant disease Total RNA obtained from DMBA or acetone treated wild type (WT) or STING deficient (SKO) mouse skin or skin tumor was examined for gene expression.
Project description:Chronic stimulation of innate immune pathways by microbial agents or damaged tissue is known to promote inflammation-driven tumorigenesis by unclarified mechanisms1-3. Here we demonstrate that mutagenic 7,12-dimethylbenz(a)anthracene (DMBA), etoposide or cisplatin induces nuclear DNA leakage into the cytosol to intrinsically activate STING (Stimulator of Interferon Genes) dependent cytokine production. Inflammatory cytokine levels were subsequently augmented in a STING-dependent extrinsic manner by infiltrating phagocytes purging dying cells. Consequently, STING-/- mice, or wild type mice adoptively transferred with STING-/- bone marrow, were almost completely resistant to DMBA-induced skin carcinogenesis compared to their wild type counterparts. Our data emphasizes, for the first time, a role for STING in the induction of cancer, sheds significant insight into the causes of inflammation-driven carcinogenesis, and may provide therapeutic strategies to help prevent malignant disease Total RNA obtained from wild type murine embryonic fibroblasts (WT MEFs), STING deficient MEFs (SKO), Trex1 deficient MEFs (TKO), and both STING and Trex1 deficient MEFs (STKO) treated with DMBA and examined cytokine production by these cells.
Project description:Activation of the STING (Stimulator of Interferon Genes) pathway by microbial or self-DNA, as well as cyclic di nucleotides (CDN), results in the induction of numerous genes that suppress pathogen replication and facilitate adaptive immunity. However, sustained gene transcription is rigidly prevented to avoid lethal STING-dependent pro-inflammatory disease by mechanisms that remain unknown. We demonstrate here that after autophagy-dependent STING delivery of TBK1 (TANK-binding kinase 1) to endosomal/lysosomal compartments and activation of transcription factors IRF3 (interferon regulatory factors 3) and NF-κB (nuclear factor kappa beta), that STING is subsequently phosphorylated by serine/threonine UNC-51-like kinase (ULK1/ATG1) and IRF3 function is suppressed. ULK1 activation occurred following disassociation from its repressor adenine monophosphate activated protein kinase (AMPK), and was elicited by CDN’S generated by the cGAMP synthase, cGAS. Thus, while CDN’s may initially facilitate STING function, they subsequently trigger negative-feedback control of STING activity, thus preventing the persistent transcription of innate immune genes.
Project description:Innate immune PRRs sense nucleic acids from microbes and orchestrate cytokine production to resolve infection. Inappropriate recognition of host nucleic acids also results in autoimmune disease. Here we utilize a model of inflammation resulting from accrual of self DNA (DNase II-/- Ifnar-/-) to understand the role of PRR sensing pathways in arthritis and autoantibody production. Using mice deficient in DNase II/Ifnar together with deficiency in either STING or AIM2 (TKO), we reveal central roles for the STING and AIM2 pathway in arthritis. AIM2 TKO mice show limited inflammasome activation and, like STING TKO mice, have reduced inflammation in joints. Surprisingly, autoantibody production is maintained in AIM2 and STING TKO mice, while DNase II-/- Ifnar-/- mice also deficient in Unc93b, a chaperone required for TLR7/9 endosomal localization, fail to produce autoantibodies to nucleic acids. Collectively, these data support distinct roles for cytosolic and endosomal nucleic acid sensing pathways in disease manifestations.
Project description:Inflammatory diseases such as Aicardi-Goutieres Syndrome (AGS) and severe systemic lupus erythematosus (SLE) are generally lethal disorders that have been traced to defects in the exonuclease Trex1 (DNAseIII). Mice lacking Trex1 similarly die at an early age through comparable symptoms, including inflammatory myocarditis, through chronic activation of the STING (stimulator of interferon genes) pathway. Here we demonstrate that phagocytes rather than myocytes are predominantly responsible for causing inflammation, an outcome that could be alleviated following adoptive transfer of normal bone marrow into Trex1-/- mice. Trex1-/- macrophages did not exhibit significant augmented ability to produce pro-inflammatory cytokines compared to normal macrophages following exposure to STING-dependent activators, but rather appeared chronically stimulated by genomic DNA. These results shed molecular insight into inflammation and provide concepts for the design of new therapies. Total RNA obtained from wild type (WT), Trex1 deficient (TKO), STING deficient (SKO), or Trex1 and STING double deficient (STKO) mouse Heart
Project description:Cytosolic mitochondrial DNA (mtDNA) elicits a type I interferon response, but signals triggering the release of mtDNA from mitochondria remain enigmatic. We found that mtDNA-dependent immune signalling via the cGAS-STING pathway is under metabolic control and induced by cellular nucleotide deficiency. The mitochondrial protease YME1L preserves nucleotide pools by supporting de novo nucleotide synthesis and by proteolysis of the pyrimidine nucleotide carrier SLC25A33, limiting mitochondrial nucleotide transport and accumulation of mtDNA. Deficiency of YME1L or of the mitochondrial transcription factor A (TFAM) drives an mtDNA-dependent inflammatory response, which depends on SLC25A33 and is suppressed upon replenishment of cellular nucleotide pools. Depletion of cytosolic nucleotides upon starvation or downregulation of de novo nucleotide synthesis triggers mtDNA-dependent immune responses. Our results thus identify mtDNA release and innate immune signalling as a metabolic response, offering new therapeutic opportunities in disease.