Project description:Uncontrolled Transforming growth factor-beta (TGFβ) signaling promotes aggressive metastatic properties in late-stage breast cancers. However, how TGFβ-mediated cues are directed to induce late-stage tumorigenic events is poorly understood, particularly given that TGFβ has clear tumor suppressing activity in other contexts. Here we demonstrate that the transcriptional regulators TAZ and YAP (TAZ/YAP), key effectors of the Hippo pathway, are necessary to promote and maintain TGFβ-induced tumorigenic phenotypes in breast cancer cells. Interactions between TAZ/YAP, TGFβ-activated SMAD2/3, and TEAD transcription factors reveal convergent roles for these factors in the nucleus. Genome-wide expression analyses indicate that TAZ/YAP, TEADs and TGFβ-induced signals coordinate a specific pro-tumorigenic transcriptional program. Importantly, genes cooperatively regulated by TAZ/YAP, TEAD, and TGFβ, such as the novel targets NEGR1 and UCA1, are necessary for maintaining tumorigenic activity in metastatic breast cancer cells. Nuclear TAZ/YAP also cooperate with TGFβ signaling to promote phenotypic and transcriptional changes in non-tumorigenic cells to overcome TGFβ repressive effects. Our work thus identifies crosstalk between nuclear TAZ/YAP and TGFβ signaling in breast cancer cells, revealing novel insight into late-stage disease-driving mechanisms. Expression profiling was conducted following the repression of the transcriptional regulators TAZ and YAP (TAZ/YAP), the TEAD family of transcription factors (TEAD1/2/3/4), or the TGFb signaling pathway (with SB-431542, an inhibitor of the TBRI recpeptor) in human MDA-MB-231-LM2 breast cancer cells treated with TGFβ1. Human MDA-MB-231-LM2-4 breast cancer cells were transfected with control siRNA, or siRNAs targeting TAZ/YAP or all four TEADs and were treated 24 hours later with 500pM TGFβ1 or 5mM SB-431542 for an additional 24 hours. Total RNA was isolated and twelve microarrays in total were performed, with each condition carried out three times on separate days. The Boston University Microarray Core generated the data using the Affymetrix Human Gene 1.0 St Array.
Project description:The goal of this study was to identify YAP/TAZ direct transcriptional targets and transcriptional partners, through ChIP-sequencing and gene expression profiling. ChIP-seq analysis of YAP, TAZ, TEAD4 and JUN in MDA-MB-231 cells. Two independent replicates were analysed for each TF, as well as for negative controls.
Project description:The paralogous transcriptional cofactors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ, also called WWTR1), the main effectors of the Hippo signal transduction pathway, are emerging as pivotal determinants of malignancy in cancer. We aim to compare the transcriptome altered by knockdown of YAP, TAZ or both using siRNA in MDA-MB-231 (derived from human metastatic breast adenocarcinoma).
Project description:Aurora Kinase B and ZAK interaction model
Equivalent of the stochastic model used in "Network pharmacology model predicts combined Aurora B and ZAK inhibition in MDA-MB-231 breast cancer cells" by Tang et. al. 2018.
The only difference is cell division and partitioning of the components, which are available in the original model for SGNS2.
Project description:Uncontrolled Transforming growth factor-beta (TGFβ) signaling promotes aggressive metastatic properties in late-stage breast cancers. However, how TGFβ-mediated cues are directed to induce late-stage tumorigenic events is poorly understood, particularly given that TGFβ has clear tumor suppressing activity in other contexts. Here we demonstrate that the transcriptional regulators TAZ and YAP (TAZ/YAP), key effectors of the Hippo pathway, are necessary to promote and maintain TGFβ-induced tumorigenic phenotypes in breast cancer cells. Interactions between TAZ/YAP, TGFβ-activated SMAD2/3, and TEAD transcription factors reveal convergent roles for these factors in the nucleus. Genome-wide expression analyses indicate that TAZ/YAP, TEADs and TGFβ-induced signals coordinate a specific pro-tumorigenic transcriptional program. Importantly, genes cooperatively regulated by TAZ/YAP, TEAD, and TGFβ, such as the novel targets NEGR1 and UCA1, are necessary for maintaining tumorigenic activity in metastatic breast cancer cells. Nuclear TAZ/YAP also cooperate with TGFβ signaling to promote phenotypic and transcriptional changes in non-tumorigenic cells to overcome TGFβ repressive effects. Our work thus identifies crosstalk between nuclear TAZ/YAP and TGFβ signaling in breast cancer cells, revealing novel insight into late-stage disease-driving mechanisms. Expression profiling was conducted following the repression of the transcriptional regulators TAZ and YAP (TAZ/YAP), the TEAD family of transcription factors (TEAD1/2/3/4), or the TGFb signaling pathway (with SB-431542, an inhibitor of the TBRI recpeptor) in human MDA-MB-231-LM2 breast cancer cells treated with TGFβ1.
Project description:Purpose: The goal of this study is to understand the signaling pathway alteration in cancer cell line treated with TEAD palmitoylation inhibitor MGH-CP1, and to further validate TEAD inhibitor for specifity in TEAD-YAP interuption. Methods:Breast cancer cell line MDA-MB-231 was chosen to be treated with TEAD palmitoylation inhibitor MGH-CP1 at 10μM for 24 hours. Total RNA was isolated for the analysis. RNA samples were sent to Novogen for library construction, RNA sequencing and raw data process. Results: MGH-CP1 specifically blocks TEAD transcriptional activity compared with YAP/TAZ siRNA in MDA-MB-231 cells. Conclusions: Our study privides gene expression profiling evidence to validate our TEAD palmitoylation inhibitor MGH-CP1 as specific small molecule to block TEAD transcriptional activity. We report the application of next generation sequencing technology for high-throughput profiling of TEAD palmitoylation inhibitor MGH-CP1 in breast cancer cells.
Project description:Background: Cancer metastasis is dependent on cell migration. Several mechanisms, including epithelial-to-mesenchymal transition (EMT) and actin fiber formation, could be involved in cancer cell migration. As a downstream effector of the Hippo signaling pathway, transcriptional coactivator with PDZbinding motif (TAZ) is recognized as a key mediator of the metastatic ability of breast cancer cells. We aimed to examine whether TAZ affects the migration of breast cancer cells through the regulation of EMT or actin cytoskeleton. Methods: MCF-7 and MDA-MB-231 cells were treated with siRNA to attenuate TAZ abundance. Transwell migration assay and scratch wound healing assay were performed to study the effects of TAZ knockdown on cancer cell migration. Fluorescence microscopy was conducted to examine the vinculin and phalloidin. Semiquantitative immunoblotting and quantitative real-time PCR were performed to study the expression of small GTPases and kinases. Changes in the expression of genes associated with cell migration were examined through next-generation sequencing. Results: TAZ-siRNA treatment reduced TAZ abundance in MCF-7 and MDA-MB- 231 breast cancer cells, which was associated with a significant decrease in cell migration. TAZ knockdown increased the expression of fibronectin, but it did not exhibit the typical pattern of EMT progression. TGF-b treatment in MDA-MB-231 cells resulted in a reduction in TAZ and an increase in fibronectin levels. However, it paradoxically promoted cell migration, suggesting that EMT is unlikely to be involved in the decreased migration of breast cancer cells in response to TAZ suppression. RhoA, a small Rho GTPase protein, was significantly reduced in response to TAZ knockdown. This caused a decrease in the expression of the Rho-dependent downstream pathway, i.e., LIM kinase 1 (LIMK1), phosphorylated LIMK1/2, and phosphorylated cofilin, leading to actin depolymerization. Furthermore, myosin light chain kinase (MLCK) and phosphorylated MLC2 were significantly decreased in MDA-MB-231 cells with TAZ knockdown, inhibiting the assembly of stress fibers and focal adhesions. Conclusion: TAZ knockdown inhibits the migration of breast cancer cells by regulating the intracellular actin cytoskeletal organization. This is achieved, in part, by reducing the abundance of RhoA and Rho-dependent downstream kinase proteins, which results in actin depolymerization and the disassembly of stress fibers and focal adhesions.
Project description:The project profiled the expression patterns in hypoxia induced secretomes between MDA-MB-231 parental and MDA-MB-231 Bone Tropic (BT) breast cancer cell lines which have been previously generated by Massague and colleagues (Kang et al. Cancer Cell 2003).
Project description:To investigate the function of Neuropilin-1 (NRP-1) in breast cancer MDA-MB-231 cells. CRISPR-Cas9 gene editing was used to knockout (KO) the NRP-1 gene in MDA-MB-231 human triple-negative breast cancer cells. Differentially expressed genes (DEGs) were determined in NRP-1 KO and parental MDA-MB-231 cells using whole transcriptome next-generation sequencing.