Project description:We conducted transcript profiling and metabolome profiling induced by UV irradiation in grape berry skin. Transcriptome analysis was carried out with genome-wide microarray and two hundred thirty eight genes were more than 5-fold up-regulated by UV irradiation. The enrichment analysis showed GO terms including stilbene synthase (STS) gene. Moreover, the principal component analysis (PCA) of metabolome analysis showed a compound, identified resveratrol, accumulated in grape berry skin specifically. Our result clearly shows that UV irradiation induced only accumulation of resveratrol and its analogues but did not induce accumulation of the other phenolic compounds.
Project description:Solar ultraviolet C(UV-C)radiation reaching the Earth’s surface is little due to the filtering effects of the stratospheric ozone layer. At present, artificial UV-C irradiation is utilized for different biological processes. Grape is a major fruit crop around the world. Research has shown that UV-C irradiation induced the biosynthesis of phenols. However, changes at the molecular level in response to UV-C and leading to these effects are poorly understood. To elucidate the effect of UV-C on expression of genes in grape and the response mechanism, transcript abundance of grape (Vitis vinifera L.) leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts)
Project description:Solar ultraviolet C(UV-C)radiation reaching the Earth’s surface is little due to the filtering effects of the stratospheric ozone layer. At present, artificial UV-C irradiation is utilized for different biological processes. Grape is a major fruit crop around the world. Research has shown that UV-C irradiation induced the biosynthesis of phenols. However, changes at the molecular level in response to UV-C and leading to these effects are poorly understood. To elucidate the effect of UV-C on expression of genes in grape and the response mechanism, transcript abundance of grape (Vitis vinifera L.) leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts) Grape leaves were exposed to UV-C irradiation at 6W/m2 for 10 min. LCK-0-1, LCK-0-2 and LCK-0-3 are 0 h after the initiation of treatment and as the controls; LTR-6-1, LTR-6-2 and LTR-6-3 are for 6 h after the initiation of treatment; LTR-12-1, LTR-12-2 and LTR-12-3 are for 12 h after the initiation of treatment. Three replicates for each time point. 9 samples in all.
Project description:Seedless varieties are of particular importance to the table-grape and raisin industries. Gibberellin (GA) application is widely used in the early stages of seedless berry development to increase berry size and economic value. However, the underlying mechanism of GA induction of berry enlargement is not well understood. Here, RNA-sequencing analysis of âCentennial Seedlessâ (Vitis vinifera L.) berries treated with GA3 12 days after flowering is reported.
Project description:Light environments have long been known to influence grape (Vitis vinifera L.) berry development and biosynthesis of phenolic compounds, and ultimately affect wine quality. Here, the accumulation and compositional changes of hydroxycinnamic acids (HCAs) and flavonoids, as well as global gene expression were analyzed in Cabernet Sauvignon grape berries under sunlight exposure treatments at different phenological stages. Sunlight exposure did not consistently affect the accumulation of berry skin flavan-3-ol or anthocyanin among different seasons due to climatic variations, but increased HCA content significantly at véraison and harvest, and enhanced flavonol accumulation dramatically with its timing and severity degree trend. As in sunlight exposed berries, a highly significant correlation was observed between the expression of genes coding phenylalanine ammonia-lyase, 4-coumarate: CoA ligase, flavanone 3-hydroxylase and flavonol synthase family members and corresponding metabolite accumulation in the phenolic biosynthesis pathway, which may positively or negatively be regulated by MYB, bHLH, WRKY, AP2/EREBP, C2C2, NAC, and C2H2 transcription factors (TFs). Furthermore, some candidate genes required for auxin, ethylene and abscisic acid signal transductions were also identified which are probably involved in berry development and flavonoid biosynthesis in response to enhanced sunlight irradiation. Taken together, this study provides a valuable overview of the light-induced phenolic metabolism and transcriptome changes, especially the dynamic responses of TFs and signaling components of phytohormones, and contributes to the further understanding of sunlight-responsive phenolic biosynthesis regulation in grape berries.
Project description:UV radiation (UV) alters secondary metabolism in the skin of Vitis vinifera L. berries, which may affect on the final composition of both, grapes and wines. We compared berry skin transcriptome and phenolic composition between Tempranillo berries grown in the presence or absence of solar UV in a mid-altitude Tempranillo vineyard. By analysing two different ripening degrees, expression of 121 genes was significantly altered. Functional enrichment identified that, principally, secondary metabolism-related transcripts were induced by UV, including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes induction. Concurrently, flavonol accumulation was the most evident impact of UV on the berry skin phenolic composition. Monoterpenoid biosynthetic transcripts were also up-regulated by UV, whereas induction of stilbenoid biosynthetic transcripts and stilbenes accumulation was probably induced by the joint action of UV and other condition under the UV-blocking filter, likely higher temperature. Among regulatory genes, VvMYBF1, VvMYB24 and three bHLH transcription factors were up-regulated by UV. Homologs to Arabidopsis UVR8-dependent UV-B-induced genes were also induced, including VvHY5-1, VvHY5-2 and VvRUP UV-B signalling genes. This suggests that the UV-B-specific signalling pathway is activated in the skin of grapes grown at low-medium altitudes. The biosynthesis and accumulation of UV-absorbing compounds that are appreciated for winemaking were almost specifically triggered, which indicates that viticultural practices increasing solar UV incidence may improve grape features important to wine production. A total of 12 samples were hybridized. Grape skin RNA from berries ripening under a UV-transmitting filter (FUV+) and a UV-blocking filter (FUV-) was compared. Berry skin of two different ripening stages was analysed on each UV treatment. All samples were harvested simultaneously and a NaCl series was used to select the ripening degree in a non-invasive way. Three biological replicates were analyzed for each sample.
Project description:Auxin treatment of grape (Vitis vinifera L.) berries delays ripening by inducing changes in gene expression and cell wall metabolism and could combat some deleterious climate change effects. Auxins are inhibitors of grape berry ripening and their application may be useful to delay harvest to counter effects of climate change. However, little is known about how this delay occurs. The expression of 1892 genes was significantly changed compared to the control during a 48 h time-course where the auxin 1-naphthaleneacetic acid (NAA) was applied to pre-veraison grape berries. Principal component analysis showed that the control and auxin-treated samples were most different at 3 h post-treatment when approximately three times more genes were induced than repressed by NAA. There was considerable cross-talk between hormone pathways, particularly between those of auxin and ethylene. Decreased expression of genes encoding putative cell wall catabolic enzymes (including those involved with pectin) and increased expression of putative cellulose synthases indicated that auxins may preserve cell wall structure. This was confirmed by immunochemical labelling of berry sections using antibodies that detect homogalacturonan (LM19) and methyl-esterified homogalacturonan (LM20) and by labelling with the CMB3a cellulose-binding module. Comparison of the auxin-induced changes in gene expression with the pattern of these genes during berry ripening showed that the effect on transcription is a mix of changes that may specifically alter the progress of berry development in a targeted manner and others that could be considered as non-specific changes. Several lines of evidence suggest that cell wall changes and associated berry softening are the first steps in ripening and that delaying cell expansion can delay ripening providing a possible mechanism for the observed auxin effects.