Project description:The imprinted Dlk1-Dio3 domain comprises the developmental genes Dlk1 and Rtl1, which are silenced on the maternal chromosome in different cell types. On this parental chromosome, the domain’s imprinting control region activates a polycistron that produces the lncRNA Meg3 and many miRNAs (Mirg) and C/D-box snoRNAs (Rian). Although Meg3 lncRNA is nuclear and associates with the maternal chromosome, it is unknown whether it controls gene repression in cis. We created mouse embryonic stem cells (mESCs) that carry an ectopic poly(A) signal, reducing RNA levels along the polycistron, and generated Rian-/- mESCs as well. Upon ESC differentiation, we found that Meg3 lncRNA (but not Rian) is required for Dlk1 repression on the maternal chromosome. Biallelic Meg3 expression acquired through CRISPR-mediated demethylation of the paternal Meg3 promoter led to biallelic Dlk1 repression, and to loss of Rtl1 expression. lncRNA expression also correlated with DNA hypomethylation and CTCF binding at the 5’-side of Meg3. Using Capture Hi-C, we found that this creates a Topologically Associating Domain (TAD) organization that brings Meg3 close to Dlk1 on the maternal chromosome. The requirement of Meg3 for gene repression and TAD structure may explain how aberrant MEG3 expression at the human DLK1-DIO3 locus associates with imprinting disorders.
Project description:Mouse embryonic stem cells (ESCs) have played a crucial role in biomedical research where they can be used to elucidate gene function through the generation of genetically modified mice. A critical requirement for the success of this technology is the ability of ESCs to contribute to viable chimaeras with germ-line transmission of the genetically modified allele. We have identified several ESC clones that cause embryonic death of chimaeras at mid to late gestation stages. These clones had a normal karyotype, were pathogen free and their in vitro differentiation potential was not compromised. Chimaeric embryos developed normally up to E13.5 but showed a significant decrease in embryo survival by E17.5 with frequent haemorrhaging. We investigated the relationship between the ESCs transcriptional and epigenomic state and their ability to contribute to viable chimaeras. RNA sequencing identified four genes (Gtl2, Rian, Mirg and Rtl1as) located in the Dlk1-Dio3 imprinted locus that were expressed at lower levels in the compromised ESC clones and this was confirmed by qRT-PCR. Bisulphite sequencing analysis showed significant hypermethylation at the Dlk1-Dio3 imprinted locus with no consistent differences in methylation patterns at other imprinted loci. Treatment of the compromised ESCs with 5-azacytidine reactivated stable expression of Gtl2 and rescued the lethal phenotype but only gave low level chimaeras.
Project description:The chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on the prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to the recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. Genetic ablation of catalytic subunit of the PRC1 complex (RINGA/B) and ChIP-seq analysis of PRC1 and PRC2 components confirmed genome-wide decreases in PRC2 occupancy and H3K27me3 levels at PRC target sites. This activity is restricted to variant PRC1 complexes and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for polycomb domain formation and normal development. Together these observations provide a surprising new PRC1-dependent logic for PRC2 occupancy and polycomb domain formation. RING1A-/-;RING1Bfl/fl ES cells were treated with 800M-BM-5M tamoxifen for 48hours and compared to untreated control cells by ChIP-seq for RING1B, SUZ12, EZH2 and H3K27me3.
Project description:In mammals, totipotent pre-implantation embryos are formed by fusion of highly differentiated oocytes and spermatozoa. Acquisition of totipotency concurs with remodeling of chromatin states of parental genomes (âepigenetic reprogrammingâ), changes in maternally contributed transcriptome and proteome, and zygotic genome activation. Genomes of mature germ cells are more proficient in supporting embryonic development than those of somatic cells. It is currently unknown whether transgenerational inheritance of chromatin states present in mature gametes underlies the efficacy of early embryonic development after natural conception. Here, we show that Ring1 and Rnf2, two core components of the Polycomb Repressive Complex 1 (PRC1), serve redundant gene regulatory functions during oogenesis that are required to support embryonic development beyond the two-cell stage. Numerous developmental regulatory genes that are established Polycomb targets in various somatic cell types are de-repressed in Ring1/Rnf2 double mutant (dm) fully grown germinal vesicle (GV) oocytes. Translation of tested aberrant maternal transcripts is, however, delayed until after fertilization. Exchange of maternal pro-nuclei between control and Ring1/Rnf2 maternally dm early zygotes demonstrates an essential role for Ring1 and Rnf2 during oogenesis in defining cytoplasmic and nuclear maternal contributions that are both essential for proper initiation of embryonic development. A large number of genes up-regulated in Ring1/Rnf2 dm GV oocytes harbor PRC2-mediated histone H3 lysine 27 trimethylation (H3K27me3) in spermatozoa and in embryonic stem cells (ESCs), and are repressed during normal oogenesis and early embryogenesis. These data strongly support the model that Polycomb acts in the female and male germline to silence differentiation inducing genes and to program chromatin states, thereby sustaining developmental potential across generations. Expression profiling of late 2-cell embryos was performed with the following genotypes: maternal Ring1-Rnf+ (control), maternal Ring1-Rnf2- (maternal Ring1/Rnf2 double mutant). These embryos were obtained by crossing Ring1-/-Rnf2F/F control females or Ring1-/-Rnf2F/F Zp3-cre expreimental females, respectively, to Ring1+/+Rnf2F/F control males. To distinguish between maternal transcripts present in the 2-cell embryo and newly (embryonicaly) transcribed transcripts, embryos from both genotypes were either not treated (expression profiling therefore shows all maternal and embryonic transcripts) or alpha-amanitin treated (alpha-amanitin inhibits de novo transcription, therefore expression profiling of treated embryos will only show maternal transcripts). 11 samples were analyzed: 3 biological replicates (except alpha-amanitin treated maternal Ring1/Rnf2 double mutant, where only 2 replicates were analyzed) of each genotype and treatment group were analyzed. Each sample contains 40 late 2-cell embryos.
Project description:The chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on the prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to the recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. Genetic ablation of catalytic subunit of the PRC1 complex (RINGA/B) and ChIP-seq analysis of PRC1 and PRC2 components confirmed genome-wide decreases in PRC2 occupancy and H3K27me3 levels at PRC target sites. This activity is restricted to variant PRC1 complexes and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for polycomb domain formation and normal development. Together these observations provide a surprising new PRC1-dependent logic for PRC2 occupancy and polycomb domain formation.
Project description:Polycomb proteins are epigenetic regulators that localize to developmental loci in the early embryo where they mediate lineage-specific gene repression. In Drosophila, these repressors are recruited to sequence elements by DNA binding proteins associated with Polycomb repressive complex 2 (PRC2). However, the sequences that recruit PRC2 in mammalian cells have remained obscure. To address this, we integrated a series of engineered bacterial artificial chromosomes into embryonic stem (ES) cells and examined their chromatin. We found that a 44 kb region corresponding to the Zfpm2 locus initiates de novo recruitment of PRC2. We then pinpointed a CpG island within this locus as both necessary and sufficient for PRC2 recruitment. Based on this causal demonstration and prior genomic analyses, we hypothesized that large GC-rich elements depleted of activating transcription factor motifs mediate PRC2 recruitment in mammals. We validated this model in two ways. First, we showed that a constitutively active CpG island is able to recruit PRC2 after excision of a cluster of activating motifs. Second, we showed that two 1 kb sequence intervals from the E. coli genome with GC-contents comparable to a mammalian CpG island are both capable of recruiting PRC2 when integrated into the ES cell genome. Our findings demonstrate a causal role for GC-rich sequences in PRC2 recruitment and implicate a specific subset of CpG islands depleted of activating motifs as instrumental for the initial localization of this key regulator in mammalian genomes. Analysis of YY1 binding in two cell types
Project description:Dysregulation of imprinted gene loci also referred to as loss of imprinting (LOI) can result in severe developmental defects and other diseases, but the molecular mechanisms that ensure imprint stability remain incompletely understood. Here, we dissect the functional components of the imprinting control region of the essential Dlk1-Dio3 locus (called IG-DMR) and the mechanism by which they ensure imprinting maintenance. Using pluripotent stem cells carrying an allele-specific reporter system, we demonstrate that the IG-DMR consists of two antagonistic regulatory elements: a paternally methylated CpG-island that prevents the activity of Tet dioxygenases and a maternally unmethylated regulatory element, which serves as a non-canonical enhancer and maintains expression of the maternal Gtl2 lncRNA by precluding de novo DNA methyltransferase function. Targeted genetic or epigenetic editing of these elements leads to LOI with either bi-paternal or bi-maternal expression patterns and respective allelic changes in DNA methylation and 3D chromatin topology of the entire Dlk1-Dio3 locus. Although the targeted repression of either IG-DMR or Gtl2 promoter is sufficient to cause LOI, the stability of LOI phenotype depends on the IG-DMR status, suggesting a functional hierarchy. These findings establish the IG-DMR as a novel type of bipartite control element and provide mechanistic insights into the control of Dlk1-Dio3 imprinting by allele-specific restriction of the active DNA (de)methylation machinery.
Project description:During X-inactivation, Xist RNA spreads along an entire chromosome to establish silencing. However, the mechanism and functional RNA elements involved in spreading remain undefined. By performing a comprehensive endogenous Xist deletion screen, we identify Repeat B as crucial for spreading Xist and maintaining Polycomb repressive complexes 1 and 2 (PRC1/PRC2) along the inactive X (Xi). Unexpectedly, spreading of these three factors is inextricably linked. Deleting Repeat B or its direct binding partner, HNRNPK, compromises recruitment of PRC1 and PRC2. In turn, ablating PRC1 or PRC2 impairs Xist spreading. Therefore, Xist and Polycomb complexes require each other to propagate along the Xi, suggesting a positive feedback mechanism between RNA initiator and protein effectors. Perturbing Xist/Polycomb spreading causes failure of de novo Xi silencing, with partial compensatory downregulation of the active X, and also disrupts topological Xi reconfiguration. Thus, Repeat B is a multifunctional element that integrates interdependent Xist/ Polycomb spreading, silencing, and changes in chromosome architecture.