Project description:Genome-wide DNA methylation profiling was performed to identify novel markers for DNA methylation-based identification of forensically forensically relevant body flulids. CpGs specifically methylated or unmethylated in saliva, vaginal swabs, blood and semen were searched by comparing beta values of about 850000 CpGs of pooled samples of each body fluid.
Project description:In this study, small RNAs were isolated from individual donations of eight forensically relevant biological fluids (blood, semen, vaginal fluid, menstrual blood, saliva, urine, feces, and perspiration) and subjected to next generation sequencing using the Illumina® Hi-Seq platform. Sequencing reads were aligned and annotated against miRbase release 21, resulting in a list of miRNAs and their relative expression levels for each sample analyzed. Body fluids with high bacterial loads (vaginal fluid, saliva, and feces) yielded relatively low annotated miRNA counts, likely due to oversaturation of small RNAs from the endogenous bacteria. Both body-fluid specific and potential normalization miRNAs were identified for further analysis as potential body fluid identification tools for each body fluid.
Project description:In this study, small RNAs were isolated from individual donations of eight forensically relevant biological fluids (blood, semen, vaginal fluid, menstrual blood, saliva, urine, feces, and perspiration) and subjected to next generation sequencing using the Illumina® Hi-Seq platform. Sequencing reads were aligned and annotated against miRbase release 21, resulting in a list of miRNAs and their relative expression levels for each sample analyzed. Body fluids with high bacterial loads (vaginal fluid, saliva, and feces) yielded relatively low annotated miRNA counts, likely due to oversaturation of small RNAs from the endogenous bacteria. Both body-fluid specific and potential normalization miRNAs were identified for further analysis as potential body fluid identification tools for each body fluid. 32 samples - 3-5 replicates of each human biological fluid: venous blood, urine, semen (normal and vasectomized), vaginal secretions, menstrual secretions, perspiration, feces, saliva
Project description:The ability to predict tissue type and donor’s age from molecular profiles of crime scene samples has practical implications in forensics. In order to identify body fluid- and age-associated DNA methylation changes, genome-wide DNA methylation profiling was carried out for body fluids including blood, saliva, semen, menstrual blood, and vaginal fluid obtained from individuals aged 20 to 59. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450,000 CpGs in bisulfite converted DNA. Samples included 12 of each blood, saliva and semen samples from 18 male donors aged 20 to 59, and 3 of each vaginal fluid and menstrual blood samples from 4 female donors in their twenties. Genome-wide DNA methylation profiling of body fluids obtained from individuals aged 29 to 41. The Illumina Infinium 450K Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450K CpGs from human body fluids including blood, saliva and semen. Bisulfite converted DNA from the 6 samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip
Project description:The ability to predict tissue type and donor’s age from molecular profiles of crime scene samples has practical implications in forensics. In order to identify body fluid- and age-associated DNA methylation changes, genome-wide DNA methylation profiling was carried out for body fluids including blood, saliva, semen, menstrual blood, and vaginal fluid obtained from individuals aged 20 to 59. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450,000 CpGs in bisulfite converted DNA. Samples included 12 of each blood, saliva and semen samples from 18 male donors aged 20 to 59, and 3 of each vaginal fluid and menstrual blood samples from 4 female donors in their twenties. Genome-wide DNA methylation profiling of body fluids obtained from individuals aged 37 to 48. The Illumina Infinium 450K Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450K CpGs from human body fluids including blood, saliva and semen. Bisulfite converted DNA from the 12 samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip