Project description:A novel cold-inducible GSK3/Shaggy-like kinase cDNA (TaSK5) was isolated from winter wheat by a macroarray-based differential screening approach. Sequence analysis of TaSK5 revealed high similarity to Arabidopsis subgroup I GSK3/Shaggy-like kinases ASK-alpha, ASK-gamma and ASK-epsilon. Transgenic Arabidopsis plants overexpressing TaSK5 cDNA under the control of CaMV 35S promoter showed enhanced tolerance to salt and drought stresses. In contrast, the tolerance of the transgenic plants to freezing stress was not altered. To identify genes which are differentially regulated in the 35S:TaSK5 over-expressing Arabidopsis plants under non-stress conditions, we compared the genome-wide expression profiles of Col-0 and plants over-expressing TaSK5 using DNA microarrays. Sixty seven genes were found to be expressed at least 2-fold more strongly in 35S:TaSK5 plants than in Col-0, and 17 genes were found to be expressed at least 2-fold more strongly in Col-0 than in 35S:TaSK5 plants. Most of the TaSK5 up-regulated genes were also induced by abiotic stresses, including cold, salt and drought. These results support the involvement of TaSK5 in abiotic stress signal transduction. Keywords: transgenic vs wt Col.-0 comparison Total RNA was extracted from rosette leaves of two independent 3-week-old T1 Arabidopsis Col-0 plants over-expressing TaSK5 driven by 35S promoter and the whole transcriptome was compared with that of wild-type plant. Sample pairs in two independent transformants (OX7 and OX17), referred as biological replicates, were analyzed by the two-color method. Dye-swapped hybridizations were performed in every replicate.
Project description:A novel cold-inducible GSK3/Shaggy-like kinase cDNA (TaSK5) was isolated from winter wheat by a macroarray-based differential screening approach. Sequence analysis of TaSK5 revealed high similarity to Arabidopsis subgroup I GSK3/Shaggy-like kinases ASK-alpha, ASK-gamma and ASK-epsilon. Transgenic Arabidopsis plants overexpressing TaSK5 cDNA under the control of CaMV 35S promoter showed enhanced tolerance to salt and drought stresses. In contrast, the tolerance of the transgenic plants to freezing stress was not altered. To identify genes which are differentially regulated in the 35S:TaSK5 over-expressing Arabidopsis plants under non-stress conditions, we compared the genome-wide expression profiles of Col-0 and plants over-expressing TaSK5 using DNA microarrays. Sixty seven genes were found to be expressed at least 2-fold more strongly in 35S:TaSK5 plants than in Col-0, and 17 genes were found to be expressed at least 2-fold more strongly in Col-0 than in 35S:TaSK5 plants. Most of the TaSK5 up-regulated genes were also induced by abiotic stresses, including cold, salt and drought. These results support the involvement of TaSK5 in abiotic stress signal transduction. Keywords: transgenic vs wt Col.-0 comparison
Project description:The aim of this study was to analyze the impact of autotetraploidy on gene expression in Arabidopsis thaliana by comparing diploid versus tetraploid transcriptomes. In particular, this included the comparison of the transcriptome of different tetraploid A. thaliana ecotypes (Col-0 vs. Ler-0). The study was extended to address further aspects. One was the comparison of the transcriptomes in subsequent generations. This intended to obtain information on the genome wide stability of autotetraploid gene expression. Another line of work compared the transcriptomes of different diploid vs. tetraploid tissues. This aimed to investigate whether particular gene groups are specifically affected during the development of A. thaliana autotetraploids. Samples 1-8: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 9-12: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 13-24: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 25-32: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 33-36: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Ler-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 37-40: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Col-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 41-44: Arabidopsis thaliana Col-0/Ler-0 diploid transcriptome. Transcriptional profiling and comparison of diploid Col-0 vs. diploid Ler-0 seedlings. The experiment was carried out with pedigree of esrablished lines. Samples 45-48: Arabidopsis thaliana Col-0/Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid Col-0 vs tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 and Ler-0 lines.
Project description:To understand how GA functions in regulating embryo development, a genome-wide transcriptomic analysis was carried out using 9DAF seeds dissected from siliques of dellaq (rga28 gai rgl1 rgl2) and the wild-type (col-0-2) grown in full-spectrum white fluorescent light at 22°C under long day conditions (16 h light/8 h dark). Then we found that GA regulates embryo development via DELLA-LEC1interaction, a subsequent genome-wide transcriptomic analysis was carried out using 9DAF seeds dissected from siliques of lec1-4 and the wild-type (col-0-1) in the same growth condition. Basing on the criteria of 1.5-fold cutoff for the genes with 5% false discovery rate, we first identified the differentially expressed genes in dellaq vs col-0-2, lec1-4 vs Col-0-1 subsets, which are referred to as DELLA and LEC1 regulated genes. These data reveal that DELLAs and LEC1 co-target a set of common genes in late embryogenesis, strongly supporting the role of DELLA-LEC1 in embryo development.