Project description:Deep Next-Gen sequencing (NGS) to understand viral intra-host diversity, transmission dynamics and emergence of antiviral resistance in influenza viruses
Project description:Human rhinovirus and influenza virus infections of the upper airway lead to colds and the flu and can trigger exacerbations of lower airway diseases including asthma and chronic obstructive pulmonary disease. Despite modest advances in the diagnosis and treatment of infections by these viruses, novel diagnostic and therapeutic targets are still needed to differentiate between the cold and the flu, since the clinical course of influenza can be severe while that of rhinovirus is usually more mild. In our investigation of influenza and rhinovirus infection of human respiratory epithelial cells, we used a systems approach to identify the temporally changing patterns of host gene expression from these viruses. After infection of human bronchial epithelial cells (BEAS-2B) with rhinovirus, influenza virus or co-infection with both viruses, we studied the time-course of host gene expression changes over three days. From these data, we constructed a transcriptional regulatory network model that revealed shared and unique host responses to these viral infections such that after a lag of 4-8 hours, most cell host responses were similar for both viruses, while divergent host cell responses appeared after 24-48 hours. The similarities and differences in gene expression after epithelial infection of rhinovirus, influenza virus, or both viruses together revealed qualitative and quantitative differences in innate immune activation and regulation. These differences help explain the generally mild outcome of rhinovirus infections compared to influenza infections which can be much more severe. Human bronchial epithelial cells (BEAS-2B) were infected with rhinovirus, influenza virus or both viruses and RNAs were then profiled at 10 time points (2, 4, 6, 8, 12, 24, 26, 48, 60 and 72hrs)
Project description:Human rhinovirus and influenza virus infections of the upper airway lead to colds and the flu and can trigger exacerbations of lower airway diseases including asthma and chronic obstructive pulmonary disease. Despite modest advances in the diagnosis and treatment of infections by these viruses, novel diagnostic and therapeutic targets are still needed to differentiate between the cold and the flu, since the clinical course of influenza can be severe while that of rhinovirus is usually more mild. In our investigation of influenza and rhinovirus infection of human respiratory epithelial cells, we used a systems approach to identify the temporally changing patterns of host gene expression from these viruses. After infection of human bronchial epithelial cells (BEAS-2B) with rhinovirus, influenza virus or co-infection with both viruses, we studied the time-course of host gene expression changes over three days. From these data, we constructed a transcriptional regulatory network model that revealed shared and unique host responses to these viral infections such that after a lag of 4-8 hours, most cell host responses were similar for both viruses, while divergent host cell responses appeared after 24-48 hours. The similarities and differences in gene expression after epithelial infection of rhinovirus, influenza virus, or both viruses together revealed qualitative and quantitative differences in innate immune activation and regulation. These differences help explain the generally mild outcome of rhinovirus infections compared to influenza infections which can be much more severe.
Project description:Whole-genome, time-course data was developed from the lungs of influenza infected mice to better characterize the dynamics of the host immune response during infection. Lung for microarray studies were obtained from female, five-week old C57BL/6Js infected with influenza viruses. Forty-two animals per group were inoculated with 10^5 PFU of A/Kawasaki/UTK-4/09 H1N1 virus [Kawasaki], A/California/04/09 (H1N1) virus (pH1N1) [SOIV], A/Vietnam/1203/04 H5N1 virus (H5N1), 10^3 PFU A/Vietnam/1203/04 H5N1 virus (H5N1) [VN1203] or mock-infected with PBS. Spanning the first week of the infections, three animals per infection group were sacrificed at 14 predetermined time points, lungs isolated and the homogenate was used to assess changes in genes expression over time and between infections.
Project description:Whole-genome, time-course data was developed from the lungs of influenza infected mice to better characterize the dynamics of the host immune response during infection.
Project description:This study revealed important similarities but also critical differences between the H5N1 and 1918-reassortant viruses, highlighting aspects of the host–pathogen interface caused by highly virulent influenza viruses.
Project description:Non-human primates are the animals closest to humans for use in influenza A virus challenge studies, in terms of their phylogenetic relatedness, physiology and immune systems. Previous studies have shown that cynomolgus macaques (Macaca fascicularis) are permissive for infection with H1N1pdm influenza virus. These studies have typically used combined challenge routes, with the majority being intra-tracheal delivery, and high doses of virus (> 107 infectious units). This paper describes the outcome of novel challenge routes (inhaled aerosol, intra-nasal instillation) and low to moderate doses (103 to 106 plaque forming units) of H1N1pdm virus in cynomolgus macaques. All 4 challenge groups showed sero-conversion and evidence of virus replication, although the disease was sub-clinical. Intra-nasal challenge led to an infection confined to the nasal cavity. A low dose (103 plaque forming units) did not lead to detectable infectious virus shedding, but a 1000-fold higher dose led to virus shedding in all intra-nasal challenged animals. In contrast, aerosol and intra-tracheal challenge routes led to infections throughout the respiratory tract, although shedding from the nasal cavity was less reproducible between animals compared to the high-dose intra-nasal challenge group. Intra-tracheal and aerosol challenges induced a transient lymphopaenia, similar to that observed in influenza-infected humans, and greater virus-specific cellular immune responses in the blood were observed in these groups in comparison to the intra-nasal challenge groups. Activation of lung macrophages and innate immune response genes were detected at days 5 to 7 post-challenge. The kinetics of infection, both virological and immunological, were broadly in line with human influenza A virus infections. These more authentic infection models should be valuable in the determination of anti-influenza efficacy of novel entities against less severe (and thus more common) influenza infections.
Project description:Heldt2012 - Influenza Virus Replication
The model describes the life cycle of influenza A virus in a mammalian cell including the following steps: attachment of parental virions to the cell membrane, receptor-mediated endocytosis, fusion of the virus envelope with the endosomal membrane, nuclear import of vRNPs, viral transcription and replication, translation of the structural viral proteins, nuclear export of progeny vRNPs and budding of new virions. It also explicitly accounts for the stabilization of cRNA by viral polymerases and NP and the inhibition of vRNP activity by M1 protein binding. In short, the model focuses on the molecular mechanism that controls viral transcription and replication.
This model is described in the article:
Modeling the intracellular dynamics of influenza virus replication to understand the control of viral RNA synthesis.
Heldt FS, Frensing T, Reichl U.
J Virol.
Abstract:
Influenza viruses transcribe and replicate their negative-sense RNA genome inside the nucleus of host cells via three viral RNA species. In the course of an infection, these RNAs show distinct dynamics, suggesting that differential regulation takes place. To investigate this regulation in a systematic way, we developed a mathematical model of influenza virus infection at the level of a single mammalian cell. It accounts for key steps of the viral life cycle, from virus entry to progeny virion release, while focusing in particular on the molecular mechanisms that control viral transcription and replication. We therefore explicitly consider the nuclear export of viral genome copies (vRNPs) and a recent hypothesis proposing that replicative intermediates (cRNA) are stabilized by the viral polymerase complex and the nucleoprotein (NP). Together, both mechanisms allow the model to capture a variety of published data sets at an unprecedented level of detail. Our findings provide theoretical support for an early regulation of replication by cRNA stabilization. However, they also suggest that the matrix protein 1 (M1) controls viral RNA levels in the late phase of infection as part of its role during the nuclear export of viral genome copies. Moreover, simulations show an accumulation of viral proteins and RNA toward the end of infection, indicating that transport processes or budding limits virion release. Thus, our mathematical model provides an ideal platform for a systematic and quantitative evaluation of influenza virus replication and its complex regulation.
With the current parameter set, the model reproduces an infection at a multiplicity of infection (MOI) of 10. Figure 2A of the paper is reproduced here, with parameters kDegRnp and kSynP changed to zeros.
Initial conditions and parameter changes that were used to obtain specific figures in the article can be found in Table A2.
The model has the correct value for kAttLo as 4.55e-04. The value of this parameter mentioned as 4.55e-02 in Table 1 of the paper is incorrect. This is checked with the author.
This model is hosted on BioModels Database
and identified
by: MODEL1307270000
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.