Project description:BACKGROUND & AIMS: c-Jun N-terminal kinase (JNK)1 and JNK2 are expressed in hepatocytes and have overlapping and distinct functions. JNK proteins are activated, via phosphorylation, in response to acetaminophen- or CCl4-induced liver damage; the level of activation correlates with the degree of injury. SP600125, a JNK inhibitor, has been reported to block acetaminophen-induced liver injury. We investigated the role of JNK in drug-induced liver injury (DILI) in liver tissues from patients and in mice with genetic deletion of JNK in hepatocytes. METHODS: We studied liver sections from patients with DILI (due to acetaminophen, phenprocoumon, non-steroidal anti-inflammatory drugs or autoimmune hepatitis), or patients without acute liver failure (controls), collected from a DILI Biobank in Germany. Levels of total and activated (phosphorylated) JNK were measured by immunohistochemistry and western blotting. Mice with hepatocyte-specific deletion of Jnk1 (Jnk1Îhepa) or combination of Jnk1 and Jnk2 (JnkÎhepa), as well as Jnk1-floxed C57BL/6 (control) mice, were given injections of CCl4 (to induce fibrosis) or acetaminophen (to induce toxic liver injury). We performed gene expression microarray, and phosphoproteomic analyses to determine mechanisms of JNK activity in hepatocytes. RESULTS: Liver samples from DILI patients contained more activated JNK, predominantly in nuclei of hepatocytes and in immune cells, than healthy tissue. Administration of acetaminophen to JnkÎhepa mice produced a greater level of liver injury than that observed in Jnk1Îhepa or control mice, based on levels of serum markers and microscopic and histologic analysis of liver tissues. Administration of CCl4 also induced stronger hepatic injury in JnkÎhepa mice, based on increased inflammation, cell proliferation, and fibrosis progression, compared to Jnk1Îhepa or control mice. Hepatocytes from JnkÎhepa mice given acetaminophen had an increased oxidative stress response, leading to decreased activation of AMPK, total protein AMPK levels, and pJunD and subsequent necrosis. Administration of SP600125 before or with acetaminophen protected JnkÎhepa and control mice from liver injury. CONCLUSIONS: In hepatocytes, JNK1 and JNK2 appear to have combined effects in protecting mice from CCl4- and acetaminophen-induced liver injury. It is important to study the tissue-specific functions of both proteins, rather than just JNK1, in the onset of toxic liver injury. JNK inhibition with SP600125 shows off-target effects. Livers and primary hepatocytes were isolated from wild type and JNKÎhepa (Jnk1Îhepa/global Jnk2-/-) double-knockout mice and subjected to gene expression profiling.
Project description:Chronic liver injury triggers complications such as liver fibrosis and hepatocellular carcinoma (HCC), which are associated with alterations in distinct signaling pathways. Of particular interest is the interaction between mechanisms controlled by IKKγ/NEMO, the regulatory IKK subunit, and Jnk activation for directing cell death and survival. In the present study, we aimed to define the relevance of Jnk in hepatocyte-specific NEMO knockout mice (NEMOΔhepa), a genetic model of chronic inflammatory liver injury. We generated global Jnk1-/-/NEMOΔhepa and Jnk2-/-/NEMOΔhepa mice by crossing NEMOΔhepa mice with Jnk1-/- and Jnk2-/- animals, respectively, and examined the progression of chronic liver disease. Moreover, we investigated the expression of Jnk during acute liver injury, evaluated the role of Jnk1 in bone marrow-derived cells, and analyzed the expression of NEMO and pJnk in human diseased-livers. Deletion of Jnk1 significantly aggravated the progression of liver disease, exacerbating apoptosis, compensatory proliferation and carcinogenesis in NEMOΔhepa mice. Jnk2-/-/NEMOΔhepa showed increased RIP-1 and RIP-3 expression and hepatic inflammation. Jnk1 in hematopoietic cells rather than hepatocytes had an impact on the progression of chronic liver disease in NEMOΔhepa livers. These findings are of clinical relevance since NEMO expression was down-regulated in hepatocytes of patients with HCC whereas NEMO and pJnk were expressed in a large amount of infiltrating cells. While Jnk1 is protective in NEMOΔhepa-depleted hepatocytes, Jnk1 in hematopoietic cells rather than hepatocytes is a crucial driver of hepatic injury. These results elucidate the complex function of Jnk in chronic inflammatory liver disease. Livers from global knockout mice for Jnk1 (Jnk1-/-) and Jnk2 (Jnk2-/- ), and double-knockout mice for Jnk1/NEMO (global Jnk1-/-/NEMOΔhepa) and Jnk2/NEMO (global Jnk2-/-/NEMOΔhepa), were subjected to gene expression profiling.
Project description:BACKGROUND & AIMS: c-Jun N-terminal kinase (JNK)1 and JNK2 are expressed in hepatocytes and have overlapping and distinct functions. JNK proteins are activated, via phosphorylation, in response to acetaminophen- or CCl4-induced liver damage; the level of activation correlates with the degree of injury. SP600125, a JNK inhibitor, has been reported to block acetaminophen-induced liver injury. We investigated the role of JNK in drug-induced liver injury (DILI) in liver tissues from patients and in mice with genetic deletion of JNK in hepatocytes. METHODS: We studied liver sections from patients with DILI (due to acetaminophen, phenprocoumon, non-steroidal anti-inflammatory drugs or autoimmune hepatitis), or patients without acute liver failure (controls), collected from a DILI Biobank in Germany. Levels of total and activated (phosphorylated) JNK were measured by immunohistochemistry and western blotting. Mice with hepatocyte-specific deletion of Jnk1 (Jnk1Δhepa) or combination of Jnk1 and Jnk2 (JnkΔhepa), as well as Jnk1-floxed C57BL/6 (control) mice, were given injections of CCl4 (to induce fibrosis) or acetaminophen (to induce toxic liver injury). We performed gene expression microarray, and phosphoproteomic analyses to determine mechanisms of JNK activity in hepatocytes. RESULTS: Liver samples from DILI patients contained more activated JNK, predominantly in nuclei of hepatocytes and in immune cells, than healthy tissue. Administration of acetaminophen to JnkΔhepa mice produced a greater level of liver injury than that observed in Jnk1Δhepa or control mice, based on levels of serum markers and microscopic and histologic analysis of liver tissues. Administration of CCl4 also induced stronger hepatic injury in JnkΔhepa mice, based on increased inflammation, cell proliferation, and fibrosis progression, compared to Jnk1Δhepa or control mice. Hepatocytes from JnkΔhepa mice given acetaminophen had an increased oxidative stress response, leading to decreased activation of AMPK, total protein AMPK levels, and pJunD and subsequent necrosis. Administration of SP600125 before or with acetaminophen protected JnkΔhepa and control mice from liver injury. CONCLUSIONS: In hepatocytes, JNK1 and JNK2 appear to have combined effects in protecting mice from CCl4- and acetaminophen-induced liver injury. It is important to study the tissue-specific functions of both proteins, rather than just JNK1, in the onset of toxic liver injury. JNK inhibition with SP600125 shows off-target effects.
Project description:Chronic liver injury triggers complications such as liver fibrosis and hepatocellular carcinoma (HCC), which are associated with alterations in distinct signaling pathways. Of particular interest is the interaction between mechanisms controlled by IKKγ/NEMO, the regulatory IKK subunit, and Jnk activation for directing cell death and survival. In the present study, we aimed to define the relevance of Jnk in hepatocyte-specific NEMO knockout mice (NEMOΔhepa), a genetic model of chronic inflammatory liver injury. We generated global Jnk1-/-/NEMOΔhepa and Jnk2-/-/NEMOΔhepa mice by crossing NEMOΔhepa mice with Jnk1-/- and Jnk2-/- animals, respectively, and examined the progression of chronic liver disease. Moreover, we investigated the expression of Jnk during acute liver injury, evaluated the role of Jnk1 in bone marrow-derived cells, and analyzed the expression of NEMO and pJnk in human diseased-livers. Deletion of Jnk1 significantly aggravated the progression of liver disease, exacerbating apoptosis, compensatory proliferation and carcinogenesis in NEMOΔhepa mice. Jnk2-/-/NEMOΔhepa showed increased RIP-1 and RIP-3 expression and hepatic inflammation. Jnk1 in hematopoietic cells rather than hepatocytes had an impact on the progression of chronic liver disease in NEMOΔhepa livers. These findings are of clinical relevance since NEMO expression was down-regulated in hepatocytes of patients with HCC whereas NEMO and pJnk were expressed in a large amount of infiltrating cells. While Jnk1 is protective in NEMOΔhepa-depleted hepatocytes, Jnk1 in hematopoietic cells rather than hepatocytes is a crucial driver of hepatic injury. These results elucidate the complex function of Jnk in chronic inflammatory liver disease.
Project description:Hepatic fibrosis is a wound-healing response to chronic liver injury, which may result in cirrhosis and liver failure. The c-Jun N-terminal kinase-1 (JNK1) gene has been shown to be involved in liver fibrosis. Here, we aimed to investigate the molecular mechanism and identify the cell-type involved in mediating the JNK1-dependent effect on liver fibrogenesis Wild-type (WT), JNK1−/− and JNK1Δhepa (hepatocyte-specific deletion of JNK1) mice were subjected to bile duct ligation (BDL). Additionally, we performed bone marrow transplantations (BMT), isolated primary hepatic stellate cells (HSCs) and studied their activation in vitro. Serum markers of liver damage (liver transaminases, alkaline phosphatase and bilirubin) and liver histology revealed reduced injury in JNK1−/− compared to WT and JNK1Δhepa mice. Hepatocyte cell death and proliferation was reduced in JNK1−/− compared to WT and JNK1Δhepa. Parameters of liver fibrosis such as Sirius Red staining as well as Collagen IA1 and αSMA expression were down-regulated in JNK1−/− compared to WT and JNK1Δhepa livers, 4 weeks after BDL. To delineate the essential cell-type, we performed BMT of WT and JNK1-/- into JNK1-/- and WT mice, respectively. BMT experiments excluded bone marrow derived cells from having a major impact on the JNK1-dependent effect on fibrogenesis. Hence, we investigated primary HSCs from JNK1−/− livers showing reduced transdifferentiation compared with WT and JNK1Δhepa-derived HSCs. We conclude that JNK1 in HSCs plays a crucial role in hepatic fibrogenesis and thus represents a promising target for cell-directed treatment options for liver fibrosis. Control (JNK1f/f), JNK1 null (JNK1-/-) and hepatocyte-specific JNK1 null (JNK1Δhepa) mice were subjected to control, acute and chronic injury, i.e. sham or bile-duct ligation for 48h or 28 days resp., whereafter gene expression profiles were determined.
Project description:Hepatic fibrosis is a wound-healing response to chronic liver injury, which may result in cirrhosis and liver failure. The c-Jun N-terminal kinase-1 (JNK1) gene has been shown to be involved in liver fibrosis. Here, we aimed to investigate the molecular mechanism and identify the cell-type involved in mediating the JNK1-dependent effect on liver fibrogenesis Wild-type (WT), JNK1−/− and JNK1Δhepa (hepatocyte-specific deletion of JNK1) mice were subjected to bile duct ligation (BDL). Additionally, we performed bone marrow transplantations (BMT), isolated primary hepatic stellate cells (HSCs) and studied their activation in vitro. Serum markers of liver damage (liver transaminases, alkaline phosphatase and bilirubin) and liver histology revealed reduced injury in JNK1−/− compared to WT and JNK1Δhepa mice. Hepatocyte cell death and proliferation was reduced in JNK1−/− compared to WT and JNK1Δhepa. Parameters of liver fibrosis such as Sirius Red staining as well as Collagen IA1 and αSMA expression were down-regulated in JNK1−/− compared to WT and JNK1Δhepa livers, 4 weeks after BDL. To delineate the essential cell-type, we performed BMT of WT and JNK1-/- into JNK1-/- and WT mice, respectively. BMT experiments excluded bone marrow derived cells from having a major impact on the JNK1-dependent effect on fibrogenesis. Hence, we investigated primary HSCs from JNK1−/− livers showing reduced transdifferentiation compared with WT and JNK1Δhepa-derived HSCs. We conclude that JNK1 in HSCs plays a crucial role in hepatic fibrogenesis and thus represents a promising target for cell-directed treatment options for liver fibrosis.
Project description:Adult liver has enormous regenerative capacity as it can regenerate after losing two-thirds of its mass while sustaining essential metabolic functions. How the liver balances dual demands for increased proliferative activity with maintenance of organ function is unknown, but essential to prevent liver failure. Using partial hepatectomy (PHx) in mice to model liver regeneration, we integrated single-cell RNA and ATAC sequencing to map state transitions in ~ 13,000 hepatocytes at single-cell resolution as livers regenerated, and validated key findings with immunohistochemistry, to uncover how the organ regenerates hepatocytes while simultaneously fulfilling its vital tissue-specific functions. After PHx, hepatocytes rapidly and transiently diversified into multiple distinct populations with distinct functional bifurcation: some retained the chromatin landscapes and transcriptomes of hepatocytes in undamaged adult livers while others transitioned to acquire chromatin landscapes and transcriptomes of fetal hepatocytes. Injury-related signaling pathways known to be critical for regeneration were activated in transitioning hepatocytes and the most fetal-like hepatocytes exhibited chromatin landscapes that were enriched with transcription factors regulated by those pathways.
Project description:Adult liver has enormous regenerative capacity as it can regenerate after losing two-thirds of its mass while sustaining essential metabolic functions. How the liver balances dual demands for increased proliferative activity with maintenance of organ function is unknown, but essential to prevent liver failure. Using partial hepatectomy (PHx) in mice to model liver regeneration, we integrated single-cell RNA and ATAC sequencing to map state transitions in ~ 13,000 hepatocytes at single-cell resolution as livers regenerated, and validated key findings with immunohistochemistry, to uncover how the organ regenerates hepatocytes while simultaneously fulfilling its vital tissue-specific functions. After PHx, hepatocytes rapidly and transiently diversified into multiple distinct populations with distinct functional bifurcation: some retained the chromatin landscapes and transcriptomes of hepatocytes in undamaged adult livers while others transitioned to acquire chromatin landscapes and transcriptomes of fetal hepatocytes. Injury-related signaling pathways known to be critical for regeneration were activated in transitioning hepatocytes and the most fetal-like hepatocytes exhibited chromatin landscapes that were enriched with transcription factors regulated by those pathways.
Project description:Adult liver has enormous regenerative capacity as it can regenerate after losing two-thirds of its mass while sustaining essential metabolic functions. How the liver balances dual demands for increased proliferative activity with maintenance of organ function is unknown, but essential to prevent liver failure. Using partial hepatectomy (PHx) in mice to model liver regeneration, we integrated single-cell RNA and ATAC sequencing to map state transitions in ~ 13,000 hepatocytes at single-cell resolution as livers regenerated, and validated key findings with immunohistochemistry, to uncover how the organ regenerates hepatocytes while simultaneously fulfilling its vital tissue-specific functions. After PHx, hepatocytes rapidly and transiently diversified into multiple distinct populations with distinct functional bifurcation: some retained the chromatin landscapes and transcriptomes of hepatocytes in undamaged adult livers while others transitioned to acquire chromatin landscapes and transcriptomes of fetal hepatocytes. Injury-related signaling pathways known to be critical for regeneration were activated in transitioning hepatocytes and the most fetal-like hepatocytes exhibited chromatin landscapes that were enriched with transcription factors regulated by those pathways.
Project description:Adult liver has enormous regenerative capacity as it can regenerate after losing two-thirds of its mass while sustaining essential metabolic functions. How the liver balances dual demands for increased proliferative activity with maintenance of organ function is unknown, but essential to prevent liver failure. Using partial hepatectomy (PHx) in mice to model liver regeneration, we integrated single-cell RNA and ATAC sequencing to map state transitions in ~ 13,000 hepatocytes at single-cell resolution as livers regenerated, and validated key findings with immunohistochemistry, to uncover how the organ regenerates hepatocytes while simultaneously fulfilling its vital tissue-specific functions. After PHx, hepatocytes rapidly and transiently diversified into multiple distinct populations with distinct functional bifurcation: some retained the chromatin landscapes and transcriptomes of hepatocytes in undamaged adult livers while others transitioned to acquire chromatin landscapes and transcriptomes of fetal hepatocytes. Injury-related signaling pathways known to be critical for regeneration were activated in transitioning hepatocytes and the most fetal-like hepatocytes exhibited chromatin landscapes that were enriched with transcription factors regulated by those pathways.