Project description:The draft nuclear genomes of Diplodia sapinea, Ceratocystis moniliformis s. str., and C. manginecans are presented. Diplodia sapinea is an important shoot-blight and canker pathogen of Pinus spp., C. moniliformis is a saprobe associated with wounds on a wide range of woody angiosperms and C. manginecans is a serious wilt pathogen of mango and Acacia mangium. The genome size of D. sapinea is estimated at 36.97 Mb and contains 13 020 predicted genes. Ceratocystis moniliformis includes 25.43 Mb and is predicted to encode at least 6 832 genes. This is smaller than that reported for the mango wilt pathogen C. manginecans which is 31.71 Mb and is predicted to encode at least 7 494 genes. The latter is thus more similar to C. fimbriata s.str., the type species of the genus. The genome sequences presented here provide an important resource to resolve issues pertaining to the taxonomy, biology and evolution of these fungi.
Project description:Two new bioactive trisubstituted furanones, named pinofuranoxins A and B (1 and 2), were isolated from Diplodia sapinea, a worldwide conifer pathogen causing severe disease. Pinofuranoxins A and B were characterized essentially by NMR and HRESIMS spectra, and their relative and absolute configurations were assigned by NOESY experiments and computational analyses of electronic circular dichroism spectra. They induced necrotic lesions on Hedera helix L., Phaseolus vulgaris L., and Quercus ilex L. Compound 1 completely inhibited the growth of Athelia rolfsii and Phytophthora cambivora, while 2 showed antioomycetes activity against P. cambivora. In the Artemia salina assay both toxins showed activity inducing larval mortality.