Project description:Time dependent-profiles in the gene expression level following lateral moderate fluid percussion injury in the rat brain We used microarray to elucidate relationship between the alteration of gene expression levels and the progression of brain damages following traumatic brain injury. To examine the levels of gene expression in the early phase of traumatic brain injury, we analyzed the gene expression at 3, 6, 12, and 48 h after trauma using the lateral moderate fluid percussion TBI model. The ratios of the gene expression level were compared between chips corresponding to the 3, 6 and 12 h fluid percussion groups and the sham group chips. On the other hand, the rations of gene expression level after 48 h FPI were compared with 48 h sham chip, because the gene expression levels of 48 h sham chip were distinct from sham group chips (3, 6 and 12 h) in the cluster and principal components analyses.
Project description:Background: Traumatic brain injury (TBI) often results in diverse molecular responses, challenging traditional proteomic studies that measure average changes at tissue levels and fail to capture the complexity and heterogeneity of the affected tissues. Spatial proteomics offers a solution by providing insights into sub-region-specific alterations within tissues. This study focuses on the hippocampal sub-regions, analyzing proteomic expression profiles in mice at the acute (1 day) and subacute (7 days) phases of post-TBI to understand subregion-specific vulnerabilities and long-term consequences. Methods: Three mice brains were collected from each group including Sham, 1-day post-TBI and 7-day post-TBI. Hippocampal subregions were extracted using Laser Microdissection (LMD); and subsequently analyzed by label-free quantitative proteomics. Results: The spatial analysis reveals region-specific protein abundance changes, highlighting the elevation of FN1, LGALS3BP, HP, and MUG-1 in the stratum moleculare (SM), suggesting potential immune cell enrichment post-TBI. Notably, established markers of chronic traumatic encephalopathy, IGHM and B2M, exhibit specific upregulation in the dentate gyrus bottom (DG2) independent of direct mechanical injury. Metabolic pathway analysis identifies disturbances in glucose and lipid metabolism, coupled with activated cholesterol synthesis pathways enriched in SM at 7-Day post-TBI and subsequently in deeper DG1 and DG2 suggesting a role in neurogenesis and onset of recovery. Coordinated activation of neuroglia and microtubule dynamics in DG2 suggest recovery mechanisms in less affected regions. Cluster analysis revealed spatial variations post-TBI, indicative of dysregulated neuronal plasticity and neurogenesis and further predisposition to neurological disorders. TBI-induced protein upregulation (MUG-1, PZP, GFAP, TJP, STAT-1 and CD44) across hippocampal sub-regions indicates shared molecular responses and links to neurological disorders. Spatial variations were demonstrated by proteins dysregulated in both or either of the time-points exclusively in each subregion (ELAVL2, CLIC1 in PL, CD44 and MUG-1 in SM, and SHOC2, LGALS3 in DG). Conclusions: Utilizing advanced spatial proteomics techniques, the study unveils the dynamic molecular responses in distinct hippocampal subregions post-TBI. It uncovers region-specific vulnerabilities and dysregulated neuronal processes, and potential recovery-related pathways that contribute to our understanding of TBI’s neurological consequences and provides valuable insights for biomarker discovery and therapeutic targets.
Project description:Time dependent-profiles in the gene expression level following lateral moderate fluid percussion injury in the rat brain We used microarray to elucidate relationship between the alteration of gene expression levels and the progression of brain damages following traumatic brain injury.
Project description:Warfare has long been associated with traumatic brain injury (TBI) in militarized zones. Common forms of TBI can be caused by a physical insult to the head-brain or by the effects of a high velocity blast shock wave generated by the detonation of an explosive device. While both forms of trauma are distinctly different regarding the mechanism of trauma induction, there are striking similarities in the cognitive and emotional status of survivors. Presently, proven effective therapeutics for the treatment of either form of TBI are unavailable. To be able to develop efficacious therapies, studies involving animal models of physical- and blast-TBI are required to identify possible novel or existing medicines that may be of value in the management of clinical events. We examined indices of cognition and anxiety-like behavior and the hippocampal gene transcriptome of mice subjected to both forms of TBI. We identified common behavioral deficits and gene expression regulations, in addition to unique injury-specific forms of gene regulation. Molecular pathways presented a pattern similar to that seen in gene expression. Interestingly, pathways connected to Alzheimer’s disease displayed a markedly different form of regulation depending on the type of TBI. While these data highlight similarities in behavioral outcomes after trauma, the divergence in hippocampal transcriptome observed between models suggests that, at the molecular level, the TBIs are quite different. These models may provide tools to help define therapeutic approaches for the treatment of physical- and blast-TBIs. Based upon observations of increasing numbers of personnel displaying TBI related emotional and behavioral changes in militarized zones, the development of efficacious therapies will become a national if not a global priority. Keywords: Physical-traumatic brain injury; Blast-traumatic brain injury; Cognitive dysfunction; Gene expression; Molecular pathway(s); Neurodegeneration; Stem cells; Alzheimer’s disease
Project description:Background: Traumatic brain injury is a medical event of global concern, and a growing body of research suggests that circular RNA can play very important roles in traumatic brain injury. To explore the functions of more novel and valuable circular RNA in traumatic brain injury response, a moderate traumatic brain injury in rat was established and a comprehensive analysis of circular RNA expression profiles in rat cerebral cortex was done. Results: As a result, 301 up-regulated and 284 down-regulated circular RNAs were obtained in moderate traumatic brain injury rats, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed based on the circular RNA’s host genes, and a circRNA-miRNA interaction network based on differentially expressed circular RNAs was constructed. Also, four circular RNAs were validated by RT-qPCR and sanger sequencing. Conclusion: This study showed that differentially expressed circular RNAs existed between rat cerebral cortex after moderate traumatic brain injury and control. And this will provide valuable information for circular RNA research in the field of traumatic brain injury.
Project description:Warfare has long been associated with traumatic brain injury (TBI) in militarized zones. Common forms of TBI can be caused by a physical insult to the head-brain or by the effects of a high velocity blast shock wave generated by the detonation of an explosive device. While both forms of trauma are distinctly different regarding the mechanism of trauma induction, there are striking similarities in the cognitive and emotional status of survivors. Presently, proven effective therapeutics for the treatment of either form of TBI are unavailable. To be able to develop efficacious therapies, studies involving animal models of physical- and blast-TBI are required to identify possible novel or existing medicines that may be of value in the management of clinical events. We examined indices of cognition and anxiety-like behavior and the hippocampal gene transcriptome of mice subjected to both forms of TBI. We identified common behavioral deficits and gene expression regulations, in addition to unique injury-specific forms of gene regulation. Molecular pathways presented a pattern similar to that seen in gene expression. Interestingly, pathways connected to AlzheimerM-bM-^@M-^Ys disease displayed a markedly different form of regulation depending on the type of TBI. While these data highlight similarities in behavioral outcomes after trauma, the divergence in hippocampal transcriptome observed between models suggests that, at the molecular level, the TBIs are quite different. These models may provide tools to help define therapeutic approaches for the treatment of physical- and blast-TBIs. Based upon observations of increasing numbers of personnel displaying TBI related emotional and behavioral changes in militarized zones, the development of efficacious therapies will become a national if not a global priority. Keywords: Physical-traumatic brain injury; Blast-traumatic brain injury; Cognitive dysfunction; Gene expression; Molecular pathway(s); Neurodegeneration; Stem cells; AlzheimerM-bM-^@M-^Ys disease A mild physical-TBI was induced using a concussive head trauma device described previously (Milman et al., 2005; Zohar et al., 2003). Briefly, mice were lightly anesthetized (Isoflurane) and placed under the weight-drop concussive head trauma instrument. The device consisted of a metal tube (inner diameter 13 mm), placed vertically over the mouse head. A metal weight (30 g) was dropped from the top of the tube (80 cm) and struck the skull at the right side temporal area between the corner of the eye and the ear. A sponge supported the head, allowing some antero-posterior motion without any rotational head movement at the moment of the impact. Experimental conditions used to create a mild low-level blast-TBI and the subsequent model characterization, have been described in detail elsewhere (Rubovitch et al., 2011). In brief, mice were anaesthetized with a combination of ketamine (100 mg/kg) and xylazine (10 mg/kg). Once the animals were fully anaesthetized they were placed at a defined distance from a detonation source, in this case 7 meters. Pressure sensors were used to measure the explosion shock wave pressure (PSI) generated by the detonation (Free-Field ICPM-BM-. Blast Pressure Sensor; PCB Piezoelectronics, Depew, NY, USA, Model 137). At 7 meters from the source of the detonation, the animals were exposed to a maximum of a 2.5 PSI (17.2 kPa) pressure shock wave. Immediately after the induction of the injury, mice were placed back in their cages. Once the animals had recovered from the anesthesia, basic neurological assessments were undertaken to identify any acute neurological dysfunction. Only animals exhibiting no evidence of acute neurological damage post injury were subsequently used in further experiments. Sham treated mouse groups were treated identically; however, they were not exposed to physical- or blast-TBI. Mouse hippocampus tissues were randomly selected from the larger library of samples generated from the behavioral experiments and the numbers utilized in the gene expression study were as follows: sham, n = 5: physical-TBI, n = 4; blast-TBI, n = 7.
Project description:To address the hypothesis that silencing deleterious or protective injury-induced genes in the rat hippocampus will reduce or increase the numbers of injured hippocampal neurons, alter cellular pathways essential for neuronal function and improve or worsen functional outcome after traumatic brain injury (TBI), we evaluated the effects of silencing neuronal nitric oxide synthase (nNOS) and glutathione peroxidase-1 (GPx-1) expression in the injured rat hippocampus.