Project description:microRNA profiling of rat small intestinal crypt cell IEC-6. Comparing control untreated with cells treated with transforming growth factor-beta (TGF-beta). TGF-beta stimulated cell differentiation, as observed in the stimulation of intestinal epithelial cell markers (alkaline phophotase, villin, aminopeptidase N, etc.).
Project description:We have performed quantitative proteomic TandemMassTag to investigate proteomic changes after deletion of epigenetic eraser genes Hdac1 and Hdac2 in intestinal epithelial cells. Both HDAC1 and HDAC2 are epigenetic erasers that drive specific and redundant gene expression patterns, in part by removing acetyl groups on histones. Deletion of these Hdac in intestinal epithelial cell (IEC) in vivo alters intestinal homeostasis, dependent on the Hdac deleted and the level of expression of both. To determine the specific IEC function of HDAC1 and HDAC2, we have performed transcriptomic and quantitative proteomic approaches on IEC deficient in Hdac1 and Hdac2. We have defined changes in both mRNA and protein expression patterns affecting IEC differentiation. We have identified IEC Hdac1- and Hdac2-dependent common as well as specific pathways and biological processes. These findings uncover unrecognized similarities and differences between Hdac1 and Hdac2 in IEC.
Project description:The development and severity of inflammatory bowel diseases (IBD) and other chronic inflammatory conditions can be influenced by host genetic and environmental factors, including signals derived from commensal bacteria. However, the mechanisms that integrate these diverse cues remain undefined. Here we demonstrate that intestinal epithelial cells (IECs) isolated from IBD patients exhibit decreased expression of the epigenome-modifying enzyme histone deacetylase 3 (HDAC3). Further, genome-wide analyses of murine IECs that lack HDAC3 (HDAC3?IEC) revealed that HDAC3 deficiency resulted in dysregulated gene expression coupled with alterations in histone acetylation. Critically, conventionally-housed HDAC3?IEC mice demonstrated loss of Paneth cells, impaired IEC function and alterations in the composition of intestinal commensal bacteria. In addition, HDAC3?IEC mice exhibited significantly increased susceptibility to intestinal damage and inflammation, indicating that epithelial expression of HDAC3 plays a central role in maintaining intestinal homeostasis. Strikingly, rederivation of HDAC3?IEC mice into germ-free conditions revealed that dysregulated IEC gene expression, Paneth cell homeostasis, and intestinal barrier function were largely restored in the absence of commensal bacteria. Collectively, these data indicate that the HDAC3 is a critical factor that integrates commensal bacteria-derived signals to calibrate epithelial cell responses required to establish normal host-commensal relationships and maintain intestinal homeostasis. In this study, we performed gene expression profiling to examine how the transcriptional profiles in primary live, EpCAM+ IECs from the large intestine differed between control HDAC3FF mice (3 biological replicates) and IEC-intrinsic knockout HDAC3?IEC mice (3 biological replicates).
Project description:microRNA profiling of rat small intestinal crypt cell IEC-6. Comparing control untreated with cells treated with transforming growth factor-beta (TGF-beta). TGF-beta stimulated cell differentiation, as observed in the stimulation of intestinal epithelial cell markers (alkaline phophotase, villin, aminopeptidase N, etc.). Two condition experiment. Control vs TGF-beta treatment. Biological replicates: 3 control, 3 treated. Independently grown and harvested. One replicate per array