Project description:Neuropathic pain is an apparently spontaneous experience triggered by abnormal physiology of the peripheral or central nervous system, which evolves with time. Neuropathic pain arising from peripheral nerve injury is characterized by a combination of spontaneous pain, hyperalgesia and allodynia. There is no evidence of this type of pain in human infants or rat pups; brachial plexus avulsion, which causes intense neuropathic pain in adults, is not painful when the injury is sustained at birth. Since infants are capable of nociception from before birth and display both acute and chronic inflammatory pain behaviour from an early neonatal age, it appears that the mechanisms underlying neuropathic pain are differentially regulated over a prolonged postnatal period. We used microarrays to detail the global programme of gene expression underlying the differences in nerve injury between along the postnatal development and identified distinct classes of regulated genes during the injury Experiment Overall Design: We have performed a microarray analysis of the rat L4/L5 dorsal root ganglia, 7 days post spared nerve injury, a model of neuropathic pain. Genes that are regulated in adult rats displaying neuropathic behaviour were compared to those regulated in young rats (10 days old) that did not show the same neuropathic behaviour.
Project description:Spinal microglia play a pivotal role in the development of neuropathic pain. Peripheral nerve injury induces changes in the transcriptional profile of microglia, including increased expression of components of translational machinery. Whether microglial protein synthesis is stimulated following nerve injury and has a functional role in mediating pain hypersensitivity is unknown. Here, we show that nascent protein synthesis is upregulated in spinal microglia following peripheral nerve injury. Stimulating mRNA translation in microglia, via selective ablation of the translational repressor, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), promoted the transition of microglia to a reactive state and induced mechanical hypersensitivity. Conversely, inhibiting microglial translation by expressing mutant 4E-BP1 in microglia attenuated their peripheral nerve injury-induced activation and alleviated neuropathic pain. Thus, the stimulation of 4E-BP1-dependent translation promotes microglia reactivity and mechanical hypersensitivity, whereas its inhibition alleviates neuropathic pain.
Project description:Peripheral nerve injury alters the expression of hundreds of proteins in dorsal root ganglia (DRG). Targeting some of these proteins has led to successful treatments for acute pain, but not for sustained postoperative neuropathic pain. The latter may require targeting multiple proteins. Since a single microRNA (miR) can affect the expression of multiple proteins, here, we describe an approach to identify chronic neuropathic pain-relevant miRs. We used two variants of the spared nerve injury (SNI): Sural-SNI and Tibial-SNI and found distinct pain phenotypes between the two. Both models induced strong mechanical allodynia, but only Sural-SNI rats maintained strong mechanical and cold allodynia, as previously reported. In contrast, we found that Tibial-SNI rats recovered from mechanical allodynia and never developed cold allodynia. Since both models involve nerve injury, we increased the probability of identifying differentially regulated miRs that correlated with the quality and magnitude of neuropathic pain and decreased the probability of detecting miRs that are solely involved in neuronal regeneration. We found seven such miRs in L3-L5 DRG. The expression of these miRs increased in Tibial-SNI. These miRs displayed a lower level of expression in Sural-SNI, with four having levels lower than those in sham animals. Bioinformatics analysis of how these miRs could affect the expression of some ion channels supports the view that, following a peripheral nerve injury, the increase of the 7 miRs may contribute to the recovery from neuropathic pain while the decrease of four of them may contribute to the development of chronic neuropathic pain. The approach used resulted in the identification of a small number of potentially neuropathic pain relevant miRs. Additional studies are required to investigate whether manipulating the expression of the identified miRs in primary sensory neurons can prevent or ameliorate chronic neuropathic pain following peripheral nerve injuries. To identify the miRs that were differentially dysregulated between Tibial-SNI and Sural-SNI, we first performed 12 microarrays in a limited number of samples (in four individual DRGs per group: Sham, Tibial-SNI and Sural-SNI; two L3-DRG and two L4-DRG). Then, miRs identified as having differential expression were corroborated with real time qRT-PCR in RNA isolated from individual DRGs (L3, L4 and L5) derived from 4 rats per group (not presented here, but in the manuscript).
Project description:Microglia in the spinal dorsal horn have been implicated in the pathogenesis of neuropathic pain following peripheral nerve injury. We have revently found that CD11c-expressing spinal microglia appear after the development of behavioral pain hypersensitivity following nerve injury and are essential for recovery from neuropathic pain. In order to better understand the gene expression profiles of CD11c-expressing microglia, we performed quantitative bulk RNA sequencing of microglia isolated from mice expressing Venus fluorescent protein under the control of CD11c promoter. We found that CD11c-expressing microglia show distinct gene expression profile compared to CD11c-negative microglia following nerve injury.
Project description:Peripheral nerve injury alters the expression of hundreds of proteins in dorsal root ganglia (DRG). Targeting some of these proteins has led to successful treatments for acute pain, but not for sustained postoperative neuropathic pain. The latter may require targeting multiple proteins. Since a single microRNA (miR) can affect the expression of multiple proteins, here, we describe an approach to identify chronic neuropathic pain-relevant miRs. We used two variants of the spared nerve injury (SNI): Sural-SNI and Tibial-SNI and found distinct pain phenotypes between the two. Both models induced strong mechanical allodynia, but only Sural-SNI rats maintained strong mechanical and cold allodynia, as previously reported. In contrast, we found that Tibial-SNI rats recovered from mechanical allodynia and never developed cold allodynia. Since both models involve nerve injury, we increased the probability of identifying differentially regulated miRs that correlated with the quality and magnitude of neuropathic pain and decreased the probability of detecting miRs that are solely involved in neuronal regeneration. We found seven such miRs in L3-L5 DRG. The expression of these miRs increased in Tibial-SNI. These miRs displayed a lower level of expression in Sural-SNI, with four having levels lower than those in sham animals. Bioinformatics analysis of how these miRs could affect the expression of some ion channels supports the view that, following a peripheral nerve injury, the increase of the 7 miRs may contribute to the recovery from neuropathic pain while the decrease of four of them may contribute to the development of chronic neuropathic pain. The approach used resulted in the identification of a small number of potentially neuropathic pain relevant miRs. Additional studies are required to investigate whether manipulating the expression of the identified miRs in primary sensory neurons can prevent or ameliorate chronic neuropathic pain following peripheral nerve injuries.
Project description:Not all patients with nerve injury develop neuropathic pain. The extent of nerve damage and age at the time of injury are two of the few risk factors identified to date. In addition, preclinical studies show that neuropathic pain variance is heritable. To define such factors further, we performed a large-scale gene profiling experiment which plotted global expression changes in the rat dorsal root ganglion in three peripheral neuropathic pain models. This resulted in the discovery that the potassium channel alpha subunit KCNS1, involved in neuronal excitability, is constitutively expressed in sensory neurons and markedly downregulated following nerve injury. KCNS1 was then characterized by an unbiased network analysis as a putative pain gene, a result confirmed by single nucleotide polymorphism association studies in humans. A common amino acid changing allele, the 'valine risk allele', was significantly associated with higher pain scores in five of six independent patient cohorts assayed (total of 1359 subjects). Risk allele prevalence is high, with 18-22% of the population homozygous, and an additional 50% heterozygous. At lower levels of nerve damage (lumbar back pain with disc herniation) association with greater pain outcome in homozygote patients is P = 0.003, increasing to P = 0.0001 for higher levels of nerve injury (limb amputation). The combined P-value for pain association in all six cohorts tested is 1.14 E-08. The risk profile of this marker is additive: two copies confer the most, one intermediate and none the least risk. Relative degrees of enhanced risk vary between cohorts, but for patients with lumbar back pain, they range between 2- and 3-fold. Although work still remains to define the potential role of this protein in the pathogenic process, here we present the KCNS1 allele rs734784 as one of the first prognostic indicators of chronic pain risk. Screening for this allele could help define those individuals prone to a transition to persistent pain, and thus requiring therapeutic strategies or lifestyle changes that minimize nerve injury. Microarrays were run on mRNA extracted from adult rat L4 and L5 DRGs cells after 3,7,21,40 hours after three different sciatic nerve lesions [Spared Nerve Injury (SNI); Chronic Constriction Injury (CCI); Spinal Nerve Ligation (Ch) with Sham controls (SH)].
Project description:Neuropathic pain is an apparently spontaneous experience triggered by abnormal physiology of the peripheral or central nervous system, which evolves with time. Neuropathic pain arising from peripheral nerve injury is characterized by a combination of spontaneous pain, hyperalgesia and allodynia. There is no evidence of this type of pain in human infants or rat pups; brachial plexus avulsion, which causes intense neuropathic pain in adults, is not painful when the injury is sustained at birth. Since infants are capable of nociception from before birth and display both acute and chronic inflammatory pain behaviour from an early neonatal age, it appears that the mechanisms underlying neuropathic pain are differentially regulated over a prolonged postnatal period. We used microarrays to detail the global programme of gene expression underlying the differences in nerve injury between along the postnatal development and identified distinct classes of regulated genes during the injury
Project description:Neuropathic pain is a prevalent and debilitating chronic disease that is characterized by activation in glial cells in various pain-related regions within the central nervous system. Recent studies have suggested a sexually dimorphic role of microglia in the maintenance of neuropathic pain in rodents. Here, we utilized RNA sequencing analysis of microglia to identify whether there is a common neuropathic microglial signature and characterize the sex differences in microglia in pain-related regions in nerve injury and chemotherapy-induced peripheral neuropathy mouse models. Whilst mechanical allodynia and behavioral changes were observed in all models, transcriptomic analysis of microglia revealed no common transcriptional changes in spinal and supraspinal regions and in different neuropathic models. However, there was a substantial change in microglial gene expression within the ipsilateral lumbar spinal cord 7-days after chronic constriction injury (CCI) of the sciatic nerve. Both sexes upregulated genes associated with inflammation, phagosome, and lysosome activation, though males revealed a prominent global transcriptional shift not observed in female mice. This study demonstrates a lack of a common neuropathic microglial signature and indicates distinct sex differences in spinal microglia, suggesting they contribute to the sex-specific pain processing following nerve injury.
Project description:Severe peripheral nerve injury (PNI) often causes significant movement disorders and intractable pain. Therefore, promoting nerve regeneration while avoiding neuropathic pain, a problem that remains unsolved, is key to the clinical treatment of PNI patients. Here, we establish a novel spared nerve crush (SNC) rat model that successfully reproduces axonal regeneration and neuropathic pain after PNI. Subsequently, we obtained single-cell RNA sequencing (scRNA-seq) data from rat directly injured and indirectly injured rat dorsal root ganglion (DRG) neurons at various time points after SNC and found that the PEP1 neuronal subtype in directly injured DRG is of particular interest. Through experimental design, sc-RNA sequence processing (EDSSP) and functional verification, we identified a potential key gene, Adcyap1, that encodes a key molecule linking nerve regeneration and pain after PNI. Our study sheds new light on the intrinsic link between axonal regeneration and neuropathic pain following PNI and provides new molecular targets and ideas for therapeutic intervention.