Project description:The production of heather (Calluna vulgaris) in Germany is highly dependent on cultivars with mutated flower morphology, the so-called diplocalyx bud bloomers. So far, this unique flower type of C. vulgaris has not been reported in any other plant species. The flowers are characterised by an extremely extended flower attractiveness, since the flower buds remain closed throughout the complete flowering season. The flowers of C. vulgaris bud bloomers are male sterile, because the stamens are missing. Furthermore, petals are converted into sepals. Therefore the diplocalyx bud bloomer flowers consist of two whorls of sepals directly followed by the gynoecium. A broad comparison of wild type and bud bloomer’s flowers was undertaken to identify genes differentially expressed in the bud flowering phenotype and in the wild type of C. vulgaris. Transcriptome sequence reads were generated using next generation 454 sequencing of two flower type specific cDNA libraries. In total, 360,000 sequence reads were obtained, assembled to 12,200 contigs, functionally mapped, and annotated. Transcript abundances in wild type and bud bloomer’s libraries were compared and 365 differentially expressed genes detected. Among these differentially genes, CvPI was identified which is the orthologue of the Arabidopsis B gene PISTILLATA (PI) and considered as the most promising candidate gene. Quantitative PCR was performed to analyse the gene expression levels of two C. vulgaris B genes CvPI and CvAP3 in both flower types. CvAP3 which is the orthologue of the Arabidopsis B gene APETALA (AP3) turned out to be ectopically expressed in sepals of wild type and bud bloomer flowers. CvPI expression was proven to be reduced in the flowers of bud blooming cultivars. Differential expression patterns of the B-class genes CvAP3 and CvPI were identified to cause characteristics of flower morphology in C. vulgaris wild type and bud blooming flowers leading to the following hypotheses: ectopic expression of CvAP3 is a convincing explanation for the formation of a completely petaloid perianth in the wild type and the “bud flowering” phenotype. In C. vulgaris, CvPI is essential for determination of petal and stamen identity. The characteristic transition of petals into sepals potentially depends on the observed deficiency of CvPI and CvAP3 expression in bud blooming flowers. However, the complete loss of stamens in bud blooming flowers remains to be explained.
Project description:The production of heather (Calluna vulgaris) in Germany is highly dependent on cultivars with mutated flower morphology, the so-called diplocalyx bud bloomers. So far, this unique flower type of C. vulgaris has not been reported in any other plant species. The flowers are characterised by an extremely extended flower attractiveness, since the flower buds remain closed throughout the complete flowering season. The flowers of C. vulgaris bud bloomers are male sterile, because the stamens are missing. Furthermore, petals are converted into sepals. Therefore the diplocalyx bud bloomer flowers consist of two whorls of sepals directly followed by the gynoecium. A broad comparison of wild type and bud bloomer’s flowers was undertaken to identify genes differentially expressed in the bud flowering phenotype and in the wild type of C. vulgaris. Transcriptome sequence reads were generated using next generation 454 sequencing of two flower type specific cDNA libraries. In total, 360,000 sequence reads were obtained, assembled to 12,200 contigs, functionally mapped, and annotated. Transcript abundances in wild type and bud bloomer’s libraries were compared and 365 differentially expressed genes detected. Among these differentially genes, CvPI was identified which is the orthologue of the Arabidopsis B gene PISTILLATA (PI) and considered as the most promising candidate gene. Quantitative PCR was performed to analyse the gene expression levels of two C. vulgaris B genes CvPI and CvAP3 in both flower types. CvAP3 which is the orthologue of the Arabidopsis B gene APETALA (AP3) turned out to be ectopically expressed in sepals of wild type and bud bloomer flowers. CvPI expression was proven to be reduced in the flowers of bud blooming cultivars. Differential expression patterns of the B-class genes CvAP3 and CvPI were identified to cause characteristics of flower morphology in C. vulgaris wild type and bud blooming flowers leading to the following hypotheses: ectopic expression of CvAP3 is a convincing explanation for the formation of a completely petaloid perianth in the wild type and the “bud flowering” phenotype. In C. vulgaris, CvPI is essential for determination of petal and stamen identity. The characteristic transition of petals into sepals potentially depends on the observed deficiency of CvPI and CvAP3 expression in bud blooming flowers. However, the complete loss of stamens in bud blooming flowers remains to be explained. two samples were analysed, each representing a flower type
Project description:The saliva of the common octopus (Octopus vulgaris) has been the subject of biochemical study for over a century. A combination of bioassays, behavioural studies and molecular analysis on O. vulgaris and related species suggests that it should contain a mixture of highly potent neurotoxins and degradative proteins. However, a lack of genomic and transcriptomic data has meant that the amino acid sequences of these proteins remain almost entirely unknown. To address this, we assembled the salivary gland transcriptome of O. vulgaris and combined it with high resolution mass spectrometry data from the posterior and anterior salivary glands of two adults, the posterior salivary glands of six paralarvae and the saliva from a single adult. We identified a total of 2810 protein groups from across this range of salivary tissues and age classes, including 84 with homology to known venom protein families. Additionally, we found 21 short secreted cysteine rich protein groups of which 12 were specific to cephalopods. By combining protein expression data with phylogenetic analysis we demonstrate that serine proteases expanded dramatically within the cephalopod lineage and that cephalopod specific proteins are strongly associated with the salivary apparatus.
Project description:Recent interest in the ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste, has made all factors that affect its physiology of great interest. Increased salinity constitutes an important and frequent fluctuation faced by D. vulgaris in its natural habitat. Using data from microarray experiments, as well as other laboratory analyses, we used a systems approach to explore the effects of excess NaCl on D. vulgaris. This study demonstrates that import of osmoprotectants such as glycine betaine and ectoine constitute the primary mechanism used by D. vulgaris to counter hyper-ionic stress. Several efflux systems also were highly up-regulated, as was the ATP synthesis pathway. Increase in both RNA and DNA helicases suggested that salt stress had affected the stability of nucleic acid base pairing. An immediate response to salt stress included up-regulation of chemotaxis genes though flagellar biosynthesis was down-regulated. Other down-regulated systems included lactate uptake permeases and ABC transport systems. The extensive NaCl stress analysis was compared with microarray data from KCl stress and unlike many other bacteria, D. vulgaris responded similarly to the two stresses. Keywords: Comparison of cells treated with either NaCl (250 mM) or KCl (250 mM) to untreated cells at times of 0, 30, 60, 120, and 240 min.
Project description:RpoN (σ54) is the key sigma factor for the regulation of transcription of nitrogen fixation genes in diazotrophic bacteria, which include alpha- and beta-rhizobia. Our previous studies showed that a rpoN mutant of the beta-rhizobial strain Paraburkholderia phymatum formed root nodules on Phaseolus vulgaris that were unable to reduce atmospheric nitrogen into ammonia. In an effort to further characterize the RpoN regulon of P. phymatum, transcriptomics was combined with a powerful metabolomics approach. The metabolome of P. vulgaris root nodules infected by the P. phymatum rpoN Fix- mutant revealed statistically significant metabolic changes compared to wild-type Fix+ nodules, including reduced amounts of chorismate and elevated levels of flavonoids. A transcriptome analysis on Fix+ and Fix- nodules – combined with a search for RpoN binding sequences in promoter regions of regulated genes – confirmed the expected control of σ54 on nitrogen fixation genes in nodules. The transcriptomic data also identified additional target genes, whose differential expression was able to explain the observed metabolite changes in a numerous cases. Moreover, the genes encoding the two-component regulatory system NtrBC were downregulated in root nodules induced by the rpoN mutant and contained a putative RpoN binding motif in their promoter region, suggesting direct regulation. The construction and characterization of an ntrB mutant strain revealed impaired nitrogen assimilation in free-living conditions, as well as a noticeable symbiotic phenotype by forming less but heavier nodules on P. vulgaris roots.
Project description:Desulfovibrio vulgaris has been studied extensively for its potential in the bioremediation of heavy metals and radionuclides. Hydrocarbons and solvents, as frequent environmental co-contaminants, have been reported to inhibit microbial activities and thereby pose a limitation on bioremediation efficiency. As a part of the Genomes: GTL project to deduce the stress response pathways in metal/radionuclide reducing bacteria, we studied the responses of D. vulgaris to ethanol, which is a solvent and co-contaminant frequently encountered at contaminated DOE sites. Growth experiments in closed vessels at 37 °C indicated that D. vulgaris could maintain normal growth with 1%(v/v) ethanol. The growth rates were reduced with increasing ethanol concentrations at 2% and 5%. Growth ceased when ethanol concentration was raised to 5%(v/v). Cell lysis was apparent with decreasing optical density following 10% ethanol addition. To assess the mechanism of ethanol inhibition, genome-wide transcriptional profiles were analyzed from D. vulgaris cultures following ethanol (5% v/v) treatment using whole-genome microarrays. The ethanol treatment altered the expression of a large number of genes in the D. vulgaris genome, of which 354 were up-regulated greater than 2 fold and 217 were down-regulated by over 2 fold. As expected, changes in the transcriptional profile were similar to those of the stress response to acetone, which is also a solvent. Transcripts highly up-regulated included genes encoding the flagella structural subunits, suggesting motility as a mechanism of solvent stress response. Another group of genes highly induced were chaperones, such as dnaJ, groES, and hsp20, indicating the importance of maintaining proper protein folding under ethanol stress. Down-regulated genes included two groups of genes, ribosomal proteins and amino acid transporters, consistent with the growth inhibition by ethanol observed in growth studies. These results were interpreted that D. vulgaris responds to elevated solvent levels by increased motility and maintenance of proper protein functions. Current work is focused on the analysis of regulatory pathways based on temporal transcriptional dynamics. Keywords: Stress response
Project description:Desulfovibrio vulgaris has been studied extensively for its potential in the bioremediation of heavy metals and radionuclides. Hydrocarbons and solvents, as frequent environmental co-contaminants, have been reported to inhibit microbial activities and thereby pose a limitation on bioremediation efficiency. As a part of the Genomes: GTL project to deduce the stress response pathways in metal/radionuclide reducing bacteria, we studied the responses of D. vulgaris to acetone, which is a ketone solvent frequently observed at contaminated DOE sites. Growth experiments in closed vessels at 37 °C indicated that D. vulgaris could maintain normal growth with 3%(v/v) acetone following a 1-h lag phase. When the acetone concentration was raised to 5%(v/v), we observed a 2-h lag phase followed by a growth rate which was only 15% that of normal. At an acetone concentration of 8%(v/v), no active growth was observed following 10 hours of incubation. To assess the mechanism of acetone inhibition, genome-wide transcriptional profiles were analyzed from D. vulgaris cultures following acetone (5% v/v) treatment using whole-genome microarrays. This acetone shock altered the expression of a large number of genes in the D. vulgaris genome, of which 309 were up-regulated greater than 2 fold and 199 were down-regulated by over 2 fold. Transcripts highly up-regulated included genes encoding the flagella structural subunits, flgB (15 fold), fliE (11 fold), and flgH (10 fold). Another group of genes highly induced were chaperones, such as dnaJ (11 fold), groES (8 fold), and hsp20 (8 fold). Down-regulated genes included two groups of genes, ribosomal proteins and amino acid transporters, suggesting a state of growth arrest upon acetone addition. These results were interpreted to mean that D. vulgaris responds to elevated solvent levels by increased motility and maintenance of proper protein functions. Current work is focused on the analysis of regulatory pathways based on temporal transcriptional dynamics. Keywords: Stress response
Project description:MicroRNAs (miRNAs) are endogenous, noncoding, short RNAs directly involved in regulating gene expression at the post-transcriptional level. In spite of immense importance, limited information of P. vulgaris miRNAs and their expression patterns prompted us to identify new miRNAs in P. vulgaris by computational methods. Besides conventional approaches, we have used the simple sequence repeat (SSR) signatures as one of the prediction parameter. Moreover, for all other parameters including normalized Shannon entropy, normalized base pairing index and normalized base-pair distance, instead of taking a fixed cut-off value, we have used 99% probability range derived from the available data. We have identified 208 mature miRNAs in P. vulgaris belonging to 118 families, of which 201 are novel. 97 of the predicted miRNAs in P. vulgaris were validated with the sequencing data obtained from the small RNA sequencing of P. vulgaris. Randomly selected predicted miRNAs were also validated using qRT-PCR. A total of 1305 target sequences were identified for 130 predicted miRNAs. Using 80% sequence identity cut-off, proteins coded by 563 targets were identified. The computational method developed in this study was also validated by predicting 229 miRNAs of A. thaliana and 462 miRNAs of G. max, of which 213 for A. thaliana and 397 for G. max are existing in miRBase 20. There is no universal SSR that is conserved among all precursors of Viridiplantae, but conserved SSR exists within a miRNA family and is used as a signature in our prediction method. Prediction of known miRNAs of A. thaliana and G. max validates the accuracy of our method. Our findings will contribute to the present knowledge of miRNAs and their targets in P. vulgaris. This computational method can be applied to any species of Viridiplantae for the successful prediction of miRNAs and their targets.
Project description:Dry bean (Phaseolus vulgaris L.) seeds are a rich source of dietary zinc, especially for people consuming plant-based diets. Within P. vulgaris there is at least two-fold variation in seed Zn concentration. Genetic studies have revealed seed Zn differences to be controlled by a single gene in two closely related navy bean genotypes, Albion and Voyager. In this study, these two genotypes were grown under controlled fertilization conditions and the Zn concentration of various plant parts were determined. The two genotypes had similar levels of Zn in their leaves and pods but Voyager had 52% more Zn in its seeds than Albion. RNA was sequence from developing pods of both genotypes. Transcriptome analysis of these genotypes identified 27,198 genes in the developing bean pods, representing 86% of the genes in the P. vulgaris genome (v 1.0 DOE-JGI and USDA-NIFA). Expression was detected in 18,438 genes. A relatively small number of genes (381) were differentially expressed between Albion and Voyager. Differentially expressed genes included three genes potentially involved in Zn transport, including zinc-regulated transporter, iron regulated transporter like (ZIP), zinc-induced facilitator (ZIF) and heavy metal associated (HMA) family genes. In addition 12,118 SNPs were identified between the two genotypes. Of the gene families related to Zn and/or Fe transport, eleven genes were found to contain SNPs between Albion and Voyager.
Project description:Background: MiRNAs and phasiRNAs are negative regulators of gene expression. These small RNAs have been extensively studied in plant model species but only 10 mature microRNAs are present in miRBase version 21 and no phasiRNAs have been identified for the legume model Phaseolus vulgaris. Thanks to the recent availability of the first version of the common bean genome, degradome data and small RNA libraries, we are able to present here a catalog of the microRNAs and phasiRNAs of this organism and, particularly, new protagonists of the symbiotic nodulation events. Results: We identified a set of 185 mature miRNAs, including 121 previously unpublished sequences, encoded by 307 precursors and distributed in 98 families. Degradome data allowed us to identify a total of 181 targets for these miRNAs. We reveal two regulatory networks involving conserved miRNAs, known to play crucial roles in the well-establishment of nodules, and novel miRNAs specific of the common bean suggesting a specific action of these sequences. In parallel, we identified 125 loci that potentially produce phased small RNAs and 47 of them present all the characteristics to be triggered by a total of 31 miRNAs, including 14 new miRNAs identified in this study. Conclusions: We provide here a set of new small RNAs, which contribute to the broader scene of the sRNAome of Phaseolus vulgaris. Thanks to the identification of the miRNA targets from degradome analysis and the construction of regulatory networks between the mature microRNAs, we draw up here the probable functional regulation associated with the sRNAome and particularly in N2-fixing symbiotic nodules.