ABSTRACT: investigation of the pathogenesis of H1N1 influenza virus and swine streptococcus suis serotype 2 co-infection in pigs by microarray analysis
Project description:Swine H1N1 influenza virus and streptococcus suis serotype 2 (SS2) are two important contributors to the porcine respiratory disease complex, which have significant economic impacts. Clinically, swine influenza virus and swine streptococcus suis co-infection is common, which will increase the mortality. However, the pathogenesis of the co-infection remains largely unkown. To explore it, gene expression profiling was to performed to detect comprehensive analysis of the global host response induced by H1N1 virus infection alone, SS2 infection alone, H1N1-SS2 co-infection and PBS control.
Project description:Background: Swine influenza is a highly contagious viral infection in pigs affecting the respiratory tract that can have significant economic impacts. Streptococcus suis serotype 2 is one of the most important post-weaning bacterial pathogens in swine causing different infections, including pneumonia. Both pathogens are important contributors to the porcine respiratory disease complex. Outbreaks of swine influenza virus with a significant level of co-infections due to S. suis have lately been reported. In order to analyze a global response to the dual infection, we carried out a comprehensive gene expression profiling using a microarray approach to study the swine tracheal epithelial (NPTr) cell response to a co-infection with H1N1 swine influenza virus (swH1N1) and S. suis serotype 2. Results: Gene clustering showed that the swH1N1 and swH1N1/S. suis infections modified the expression of genes in a similar manner. Additionally, infection of NPTr cells by S. suis alone did not result in many differentially expressed genes compared to mock-infected cells. However, some important genes coding for inflammatory mediators, such as chemokines, interleukins, cell adhesion molecules and eicosanoids, were significantly upregulated in the presence of both pathogens comparing to infection with each pathogen taken individually. This synergy may also be the consequence of an increased adhesion/invasion of epithelial cells previously infected by swH1N1, as recently reported. Conclusion: In a co-infection situation, influenza virus would replicate in the respiratory epithelium inducing an inflammatory infiltrate comprised of mononuclear cells and neutrophils. Despite that these cells are unable to phagocyte and kill S. suis, they are highly activated by this pathogen. S. suis is not considered a primary pulmonary pathogen, but an exacerbated production of pro-inflammatory mediators during a co-infection with influenza virus may be of critical importance in the pathogenesis and outcome of this respiratory disease complex. Total RNA obtained from NPTr cells infected with S. suis, H1N1, or S. suis & H1N1. Four replicates in both groups.
Project description:Background: Swine influenza is a highly contagious viral infection in pigs affecting the respiratory tract that can have significant economic impacts. Streptococcus suis serotype 2 is one of the most important post-weaning bacterial pathogens in swine causing different infections, including pneumonia. Both pathogens are important contributors to the porcine respiratory disease complex. Outbreaks of swine influenza virus with a significant level of co-infections due to S. suis have lately been reported. In order to analyze a global response to the dual infection, we carried out a comprehensive gene expression profiling using a microarray approach to study the swine tracheal epithelial (NPTr) cell response to a co-infection with H1N1 swine influenza virus (swH1N1) and S. suis serotype 2. Results: Gene clustering showed that the swH1N1 and swH1N1/S. suis infections modified the expression of genes in a similar manner. Additionally, infection of NPTr cells by S. suis alone did not result in many differentially expressed genes compared to mock-infected cells. However, some important genes coding for inflammatory mediators, such as chemokines, interleukins, cell adhesion molecules and eicosanoids, were significantly upregulated in the presence of both pathogens comparing to infection with each pathogen taken individually. This synergy may also be the consequence of an increased adhesion/invasion of epithelial cells previously infected by swH1N1, as recently reported. Conclusion: In a co-infection situation, influenza virus would replicate in the respiratory epithelium inducing an inflammatory infiltrate comprised of mononuclear cells and neutrophils. Despite that these cells are unable to phagocyte and kill S. suis, they are highly activated by this pathogen. S. suis is not considered a primary pulmonary pathogen, but an exacerbated production of pro-inflammatory mediators during a co-infection with influenza virus may be of critical importance in the pathogenesis and outcome of this respiratory disease complex.
Project description:As a mild, highly contagious, respiratory disease, swine influenza always damages the innate immune systems, and increases susceptibility to secondary infections which results in considerable morbidity and mortality in pigs. Nevertheless, the systematical host response of pigs to swine influenza virus infection remains largely unknown. To explore these, a time-course gene expression profiling was performed to detect comprehensive analysis of the global host response induced by H1N1 swine influenza virus in pigs.
Project description:As a mild, highly contagious, respiratory disease, swine influenza always damages the innate immune systems, and increases susceptibility to secondary infections which results in considerable morbidity and mortality in pigs. Nevertheless, the systematical host response of pigs to swine influenza virus infection remains largely unknown. To explore these, a time-course gene expression profiling was performed to detect comprehensive analysis of the global host response induced by H1N1 swine influenza virus in pigs. At the age of day 35, 15 pigs were randomly allocated to the non-infected group and 15 to the infected group. Each piglet of the infected group was intranasaly challenged with A/swine/Hubei/101/2009(H1N1) strain and Each piglet of the non-infected group was treated similarly with an identical volume of PBS as control.
Project description:This SuperSeries is composed of the following subset Series: GSE35738: 2009 pandemic H1N1 virus causes disease and upregulation of genes related to inflammatory and immune response, cell death, and lipid metabolism in pigs GSE40088: Comparative transcriptomic analysis of acute host responses during 2009 pandemic H1N1 influenza infection in mouse, macaque, and swine (macaque dataset) GSE40091: Comparative transcriptomic analysis of acute host responses during 2009 pandemic H1N1 influenza infection in mouse, macaque, and swine (mouse dataset) Refer to individual Series
Project description:This study used virological, histological, and global gene expression data to compare the virulence of two 2009 pH1N1 isolates from human (A/California/04/2009) and swine (A/swine/Alberta/25/2009) to that of a 1918-like classical swine influenza virus (A/swine/Iowa/1930) in a pig model of infection. The overall goal of this study was to characterize the clinical, histological, virological and global gene expression responses to three distinct influenza A isolates in an experimental pig model of influenza infection. We compared the pathogenesis of two pH1N1 viruses, one derived from a human patient (A/CA/04/09 [CA09]) and the other from swine (A/swine/Alberta/25/2009 [Alb09]), with that of the 1918-like classical swine influenza virus (A/swine/Iowa/1930 [IA30]) in the pig model. Both pH1N1 isolates induced clinical symptoms such as coughing, sneezing, decreased activity, fever, and labored breathing in challenged pigs, but IA30 virus did not cause any clinical symptoms except fever. Although both the pH1N1 viruses and the IA30 virus caused lung lesions, the pH1N1 viruses were shed from the nasal cavities of challenged pigs whereas the IA30 virus was not. Microarray was used to assess global gene expression in the lungs at 3 and 5 days post-infection. Crossbred pigs fwere obtained from a healthy herd free of SIV and porcine reproductive and respiratory syndrome virus. These studies included two experiments: the classical H1N1 SIV (IA30) study was completed at Kansas State University's biosafety level 2 (BSL-2) facility in compliance with the Institutional Animal Care and Use Committee at Kansas State University, and the pH1N1 virus study was completed at the Central States Research Center (CSRC), Inc., BSL-3 facility (Oakland, NE), in compliance with the Institutional Animal Care and Use Committee at CSRC. In each experiment, 10 pigs were inoculated with noninfectious cell culture supernatant as controls. For the classical H1N1 SIV experiment, 10 4-week-old crossbred pigs were inoculated intratracheally with 10^6 50% tissue culture infective doses (TCID50)/pig of egg-derived IA30 virus. For the pH1N1 virus experiment, 10 4-week-old crossbred pigs were inoculated intratracheally with 10^6 TCID50/pig of either egg-derived CA/09 or Alb/09 virus. Five animals per group were euthanized at 3 and 5 days postinfection (dpi), respectively.