Project description:"Master" transcription factors are the gatekeepers of lineage identity. As such, they have been a major focus of efforts to manipulate cell fate for therapeutic purposes. The ETS transcription factor PU.1 has a potent ability to confer macrophage phenotypes on cells already committed to a different lineage, but how it overcomes the presence of other master regulators is not known. The nuclear receptor PPARγ is the master regulator of the adipose lineage, and its genomic binding pattern is well characterized in adipocytes. Here, we show that when expressed at macrophage levels in mature adipocytes, PU.1 bound a large fraction of its macrophage sites, where it induced chromatin opening and the expression of macrophage target genes. Strikingly, PU.1 markedly reduced the genomic binding of PPARγ without changing its abundance. PU.1 expression repressed genes with nearby adipocyte-specific PPARγ binding sites, while a common macrophage-adipocyte gene expression program was retained. Together, these data reveal unexpected lability within the adipocyte PPARγ cistrome and show that even in terminally differentiated cells, PU.1 can remodel the cistrome of another master regulator.
Project description:Master transcription factors are the gatekeepers of lineage identity. As such, they have been a major focus of efforts to manipulate cell fate for therapeutic purposes. The ETS transcription factor PU.1 has a potent ability to confer macrophage phenotypes on cells already committed to a different lineage, but how it overcomes the presence of other master regulators is not known. The nuclear receptor PPARγ is the master regulator of the adipose lineage, and its genomic binding pattern is well characterized in adipocytes. Here, we show that when expressed at macrophage levels in mature adipocytes, PU.1 bound a large fraction of its macrophage sites, where it induced chromatin opening and the expression of macrophage target genes. Strikingly, PU.1 markedly reduced the genomic binding of PPARγ without changing its abundance. PU.1 expression repressed genes with nearby adipocyte-specific PPARγ binding sites, while a common macrophage-adipocyte gene expression program was retained. Together, these data reveal unexpected lability within the adipocyte PPARγ cistrome and show that even in terminally differentiated cells, PU.1 can remodel the cistrome of another master regulator. Microarray expression profiling was performed on 3T3-L1 adipocytes from two treatment groups: (1) adipocytes transduced with a control adenovirus expressing beta-galactosidase (LACZ-Ads) and (2) adipocytes transduced with an adenovirus expressing full-length murine PU.1 cDNA (PU.1-Ads). Each sample group consists of four biological replicates which are here defined as separate differentiations of mature 3T3-L1 adipocytes and adenoviral infections. Each replicate was hybridized to an individual array for a total of eight arrays.
Project description:PPARγ is known for its anti-inflammatory actions in macrophages. However, which macrophage populations express PPARγ in vivo and how it regulates tissue homeostasis in the steady state and during inflammation is not completely understood. We show that lung and spleen macrophages constitutively expressed PPARγ, while other macrophage populations did not. Recruitment of monocytes to sites of inflammation was associated with induction of PPARγ as they differentiated to macrophages. Its absence in these macrophages led to failed resolution of inflammation, characterized by persistent, low-level recruitment of leukocytes. Conversely, PPARγ agonists supported an earlier cessation in leukocyte recruitment during resolution of acute inflammation and likewise suppressed monocyte recruitment to chronically inflamed atherosclerotic vessels. In the steady state, PPARγ deficiency in macrophages had no obvious impact in the spleen but profoundly altered cellular lipid homeostasis in lung macrophages. Reminiscent of pulmonary alveolar proteinosis, LysM-Cre x PPARγflox/flox mice displayed mild leukocytic inflammation in the steady-state lung and succumbed faster to mortality upon infection with S. pneumoniae. Surprisingly, this mortality was not due to overly exuberant inflammation, but instead to impaired bacterial clearance. Thus, in addition to its anti-inflammatory role in promoting resolution of inflammation, PPARγ sustains functionality in lung macrophages and thereby has a pivotal role in supporting pulmonary host defense. The two major subsets of monocytes (Ly-6C+ and Ly-6Clo) from 12-week old C57Bl/6 mice were sorted and the RNA extracted and hybridized to Affymetrix GeneChip® 430 2.0 arrays. We pooled leukocytes from 5 mice for each sort and sorted 3 to 4 separate times for 3 to 4 biological replicates.
Project description:Tissue-resident macrophages comprise heterogeneous populations with unique functions and distinct gene expression signatures. While it has been established that they mostly originate from embryonic progenitors, the signals inducing a characteristic tissue-specific differentiation program remain unknown. Here we identify PPARγ as the crucial transcription factor determining perinatal alveolar macrophage (AM) development and identity. Development of the fetal monocyte derived AM precursor was largely abrogated in CD11c-Cre/Ppargfl/fl mice. To reveal the underlying changes in gene expression, we performed microarray analysis of sorted WT and KO AM and pre-AM from 3 different timepoints. Part2: adult sorts & array
Project description:Tissue-resident macrophages comprise heterogeneous populations with unique functions and distinct gene expression signatures. While it has been established that they mostly originate from embryonic progenitors, the signals inducing a characteristic tissue-specific differentiation program remain unknown. Here we identify PPARγ as the crucial transcription factor determining perinatal alveolar macrophage (AM) development and identity. Development of the fetal monocyte derived AM precursor was largely abrogated in CD11c-Cre/Ppargfl/fl mice. To reveal the underlying changes in gene expression, we performed microarray analysis of sorted WT and KO AM and pre-AM from 3 different timepoints. Part1: d2 and d11 sorts & array
Project description:Master transcription factors are the gatekeepers of lineage identity. As such, they have been a major focus of efforts to manipulate cell fate for therapeutic purposes. The ETS transcription factor PU.1 has a potent ability to confer macrophage phenotypes on cells already committed to a different lineage, but how it overcomes the presence of other master regulators is not known. The nuclear receptor PPARγ is the master regulator of the adipose lineage, and its genomic binding pattern is well characterized in adipocytes. Here, we show that when expressed at macrophage levels in mature adipocytes, PU.1 bound a large fraction of its macrophage sites, where it induced chromatin opening and the expression of macrophage target genes. Strikingly, PU.1 markedly reduced the genomic binding of PPARγ without changing its abundance. PU.1 expression repressed genes with nearby adipocyte-specific PPARγ binding sites, while a common macrophage-adipocyte gene expression program was retained. Together, these data reveal unexpected lability within the adipocyte PPARγ cistrome and show that even in terminally differentiated cells, PU.1 can remodel the cistrome of another master regulator.
Project description:Here we show that alveolar macrophage (AM) identity were conserved through culture expansion as determined by the analysis of epigenetic chromatin accessibility of core AM specific transcription markers and surface markers. Further, the adaptations to the culture environment were transient, reversible and fully restored to the in vivo status upon transplantation into the alveolar niche.