Project description:"Geoglobus ahangari" strain 234(T) is an obligate Fe(III)-reducing member of the Archaeoglobales, within the archaeal phylum Euryarchaeota, isolated from the Guaymas Basin hydrothermal system. It grows optimally at 88 °C by coupling the reduction of Fe(III) oxides to the oxidation of a wide range of compounds, including long-chain fatty acids, and also grows autotrophically with hydrogen and Fe(III). It is the first archaeon reported to use a direct contact mechanism for Fe(III) oxide reduction, relying on a single archaellum for locomotion, numerous curled extracellular appendages for attachment, and outer-surface heme-containing proteins for electron transfer to the insoluble Fe(III) oxides. Here we describe the annotation of the genome of "G. ahangari" strain 234(T) and identify components critical to its versatility in electron donor utilization and obligate Fe(III) respiratory metabolism at high temperatures. The genome comprises a single, circular chromosome of 1,770,093 base pairs containing 2034 protein-coding genes and 52 RNA genes. In addition, emended descriptions of the genus "Geoglobus" and species "G. ahangari" are described.
Project description:Investigation of whole genome gene expression to identify overlooked sRNAs and sORFs. Background The completion of numerous genome sequences has introduced an era of whole-genome study. However, many real genes, including small RNAs (sRNAs) and small ORFs (sORFs), are missed in genome annotation. In order to improve genome annotation, we sought to identify novel sRNAs and sORFs in Shigella, the principal etiologic agents of bacillary dysentery or shigellosis. Results Firstly, we identified 64 sRNAs in Shigella which is experimentally validated in other bacteria based on sequence conservation. Secondly, among possible approaches to search for sRNAs, we employed computer-based and tiling array based methods, followed by RT-PCR and northern blots. This allowed us to identify 12 sRNAs in Shigella flexneri strain 301. We also find 29 candidate sORFs. Conclusions This investigation provides an updated and comprehensive annotation of the Shigella genome, increases the expected numbers of sORFs and sRNAs with the corresponding impact on future functional genomics and proteomics studies. Our method can be used for the large scale reannotation of sRNAs and sORFs in any microbe whose genome sequence is available.
Project description:Investigation of whole genome gene expression to identify overlooked sRNAs and sORFs. Background The completion of numerous genome sequences has introduced an era of whole-genome study. However, many real genes, including small RNAs (sRNAs) and small ORFs (sORFs), are missed in genome annotation. In order to improve genome annotation, we sought to identify novel sRNAs and sORFs in Shigella, the principal etiologic agents of bacillary dysentery or shigellosis. Results Firstly, we identified 64 sRNAs in Shigella which is experimentally validated in other bacteria based on sequence conservation. Secondly, among possible approaches to search for sRNAs, we employed computer-based and tiling array based methods, followed by RT-PCR and northern blots. This allowed us to identify 12 sRNAs in Shigella flexneri strain 301. We also find 29 candidate sORFs. Conclusions This investigation provides an updated and comprehensive annotation of the Shigella genome, increases the expected numbers of sORFs and sRNAs with the corresponding impact on future functional genomics and proteomics studies. Our method can be used for the large scale reannotation of sRNAs and sORFs in any microbe whose genome sequence is available. Study using total RNA recovered from five conditions.
Project description:A beta-1,3-xylanase gene (txyA) from a marine bacterium, Alcaligenes sp. strain XY-234, has been cloned and sequenced. txyA consists of a 1,410-bp open reading frame that encodes 469 amino acid residues with a calculated molecular mass of 52,256 Da. The domain structure of the beta-1,3-xylanase (TxyA) consists of a signal peptide of 22 amino acid residues, followed by a catalytic domain which belongs to family 26 of the glycosyl hydrolases, a linker region with one array of DGG and six repeats of DNGG, and a novel carbohydrate-binding module (CBM) at the C terminus. The recombinant TxyA hydrolyzed beta-1,3-xylan but not other polysaccharides such as beta-1,4-xylan, carboxymethylcellulose, curdlan, glucomannan, or beta-1,4-mannan. TxyA was capable of binding specifically to beta-1,3-xylan. The analysis using truncated TxyA lacking either the N- or C-terminal region indicated that the region encoding the CBM was located between residues 376 and 469. Binding studies on the CBM revealed that the K(d) and the maximum amount of protein bound to beta-1,3-xylan were 4.2 microM and 18.2 micromol/g of beta-1,3-xylan, respectively. Furthermore, comparison of the enzymatic properties between proteins with and without the CBM strongly indicated that the CBM of TxyA plays an important role in the hydrolysis of beta-1,3-xylan.