Project description:Brown adipocytes, muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to Pdgfrα+, Myf5Cre-lineage-marked cells. RNAseq analysis identified Early B Cell Factor-2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2-GFP embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2-expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells. Embryonic fibroblasts, isolated from dorsal body wall of E14.5 Ebf2(GFP)/+ embryos, were further fractionated based on the expression of PDGFRα and Ebf2 (GFP). Affymetrix microarray analysis was prefromed,to compare the gene expression between PDGFRα+ Ebf2(GFP)- and PDGFRα+ Ebf2(GFP)+ cells.
Project description:Brown adipocytes, muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to Pdgfrα+, Myf5Cre-lineage-marked cells. RNAseq analysis identified Early B Cell Factor-2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2-GFP embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2-expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells.
Project description:Brown adipocytes, muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to Pdgfrα+, Myf5Cre-lineage-marked cells. RNAseq analysis identified Early B Cell Factor-2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2-GFP embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2-expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells.
Project description:Brown adipocytes, muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to Pdgfrα+, Myf5Cre-lineage-marked cells. RNAseq analysis identified Early B Cell Factor-2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2-GFP embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2-expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells. Embryonic fibroblasts, isolated from dorsal body wall of E14.5 Myf5-CrE;mTmG embryos, were further fractionated based on the expression of PDGFRα, Itga7 and Myf5-cre (GFP). Total mRNA profiles from Myf5-cre(GFP)+PDGFRα+ and Myf5-cre(GFP)+PDGFRα-Itga7+ cells were generated by deep sequenceing
Project description:The induction of beige/brite adipose cells in white adipose tissue (WAT) is associated with protection against high fat diet-induced obesity and insulin resistance in animals. The helix-loop-helix transcription factor Early B-Cell Factor-2 (EBF2) regulates brown adipose tissue development. We examined the role of EBF2 in beige fat cell biogenesis by comparing transcriptome in wildtype and EBF2-overexpressing mice in the adipose tissue. Four control replicates (wildtype) and four experimental replicates (Fabp4-Ebf2) mice were analyzed
Project description:Brown and beige fats generate heat via uncoupled respiration to defend against cold, mechanistically, through the action of a network of transcription factors and cofactors. Here we globally profiled long noncoding RNAs (lncRNAs) gene expression during thermogenic adipocyte formation and identified Brown fat lncRNA 1 (Blnc1) as a novel nuclear lncRNA that promotes brown and beige adipocyte differentiation and function by forming a feedforward regulatory loop with EBF2 to drive adipogenesis toward thermogenic phenotype. LncRNAs expression were measured in BAT and WAT from mice injected saline/CL and during brown adipocyte differentiation with two replicates using Arraystar Mouse LncRNA microarray V2.0
Project description:The induction of beige/brite adipose cells in white adipose tissue (WAT) is associated with protection against high fat diet-induced obesity and insulin resistance in animals. The helix-loop-helix transcription factor Early B-Cell Factor-2 (EBF2) regulates brown adipose tissue development. We examined the role of EBF2 in beige fat cell biogenesis by comparing transcriptome in wildtype and EBF2-overexpressing mice in the adipose tissue.
Project description:Blnc1 is a novel nuclear lncRNA that promotes brown and beige adipocyte differentiation and function. Blnc1 forms a ribonucleoprotein complex with transcription factor EBF2 to stimulate the thermogenic gene program. Further, Blnc1 itself is a target of EBF2, thereby forming a feedforward regulatory loop to drive adipogenesis toward thermogenic phenotype. We used microarrays to elucidate the role of Blnc1 on brown adipocyte differentiation and the induction of the thermogenic gene program. Brown adipocytes expressing vector or brown fat lncRNA 1 (blnc1) were differentiated for 6 days and harvested for RNA isolation and microarray using Affymetrix Mouse MG-430 PM Strip arrays. Two replicated samples were included in this study.