Project description:Transcriptomic profiling of peripheral immune cells can provide a wealth of information. Classical CD14++ CD16- monocytes were isolated from the peripheral blood of healthy volunteers and patients with pancreatic ductal adenocarcinoma and profiled for differential gene expression using Affymetrix human Genechips 2.1 U133.
Project description:Transcriptomic profiling of peripheral immune cells can provide a wealth of information. Classical CD14++ CD16- monocytes were isolated from the peripheral blood of healthy volunteers and patients with pancreatic ductal adenocarcinoma and profiled for differential gene expression using Affymetrix human Genechips 2.1 U133. Differentially expressed genes were identified comparing gene expression profiles between healthy and PDAC.
Project description:Human peripheral monocytes have been categorized into three subsets based on differential expression levels of CD14 and CD16. However, the factors that influence the distribution of monocyte subsets and the roles which each subset plays in autoimmunity are not well studied. To compare the gene expression profiling 1) on intermediate monocytes CD14++CD16+ monocytes between healthy donors and autoimmune uveitis patients and 2) among 3 monocyte subsets in health donors, here we purified circulating intermediate CD14++CD16+ monocytes from 5 patients with autoimmune uveitis (labeled as P1-5) and 4 healthy donors (labeled as HD1-4) by flow cytometry and isolated total RNA to proceed microarray assay. In addition, we also purified CD14+CD16++ (non-classical monocytes) and CD14++CD16- (classical monocytes) from 4 healthy donors to do microarray. We demonstrate that CD14++CD16+ monocytes from patients and healthy control donors share a similar gene expression profile. The CD14+CD16++ cells (non-classical monocytes) display the most distinctive gene expression profiling when compared to intermediate CD14++CD16+ monocytes and classical CD14++CD16- monocytes.
Project description:Monocytes are a heterogeneous cell population with subset-specific functions and phenotypes. The differential expression of CD14 and CD16 distinguishes classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16++ monocytes. However, CD14++CD16+ monocytes remain the most poorly characterized subset so far. Therefore we analyzed the transcriptomes of the three monocyte subsets using SuperSAGE in combination with high-throughput sequencing. Analysis of 5,487,603 tags revealed unique identifiers of CD14++CD16+ monocytes, delineating these cells from the two other monocyte subsets. CD14++CD16+ monocytes were linked to antigen processing and presentation (e.g. CD74, HLA-DR, IFI30, CTSB), to inflammation and monocyte activation (e.g. TGFB1, AIF1, PTPN6), and to angiogenesis (e.g. TIE2, CD105). Therefore we provide genetic evidence for a distinct role of CD14++CD16+ monocytes in human immunity. Human monocyte subsets (CD14++CD16-, CD14++CD16+, CD14+CD16++) were isolated from 12 healthy volunteers based on MACS technology. Total RNA from monocyte subsets was isolated and same aliquots from each donor and monocyte subset were matched for SuperSAGE. Three SuperSAGE libraries (CD14++CD16-, CD14++CD16+ and CD14+CD16++) were generated.
Project description:In this study gene expression of human blood classical monocytes (CD14++CD16-), CD16 positive monocytes (consisting of non-classical CD14+16++ and intermediate CD14++CD16+ monocytes) and CD1c+ CD19- dendritic cells from healthy subjects were investigated. Keywords: expression profiling by array
Project description:Monocytes are a heterogeneous cell population with subset-specific functions and phenotypes. The differential expression of CD14 and CD16 distinguishes classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16++ monocytes. However, CD14++CD16+ monocytes remain the most poorly characterized subset so far. Therefore we analyzed the transcriptomes of the three monocyte subsets using SuperSAGE in combination with high-throughput sequencing. Analysis of 5,487,603 tags revealed unique identifiers of CD14++CD16+ monocytes, delineating these cells from the two other monocyte subsets. CD14++CD16+ monocytes were linked to antigen processing and presentation (e.g. CD74, HLA-DR, IFI30, CTSB), to inflammation and monocyte activation (e.g. TGFB1, AIF1, PTPN6), and to angiogenesis (e.g. TIE2, CD105). Therefore we provide genetic evidence for a distinct role of CD14++CD16+ monocytes in human immunity.
Project description:We report mRNA expression profiles of blood monocyte subsets in COVID patients with comparison to non-COVD samples. COVID patients were grouped into mild without hospitalization and ICU without ventilation. Monocytes were FACS sorted based on CD14 and CD16 expression, generating classical CD14+CD16- monocytes and CD16+CD14+/++ nonclassical monocytes. The mRNA expression comparison demonstrates a strong response to viral infection and suggests a defect in nonclassical monocytes maturation. It also provides several biomarkers for prognosis purposes, including CD55 and CD81.
Project description:Psoriasis patients exhibit an increased risk of death by cardiovascular disease (CVD) and have elevated levels of circulating intermediate (CD14++CD16+) monocytes. This elevation could represent evidence of monocyte dysfunction in psoriasis patients at risk of CVD, as increases in circulating CD14++CD16+ monocytes are predictive of myocardial infarction and death. An elevation in the CD14++CD16+ cell population has been previously reported in patients with psoriatic disease, which has been confirmed in the cohort of our human psoriasis patients. CD16 expression was induced in CD14++CD16neg classical monocytes following plastic adhesion, which also elicited enhanced β2 but not β1 integrin surface expression, suggesting increased adhesive capacity. Indeed, we found that psoriasis patients have increased monocyte aggregation among circulating PBMCs which is recapitulated in the KC-Tie2 murine model of psoriasis. Visualization of human monocyte aggregates using imaging cytometry revealed that classical CD14++CD16neg monocytes are the predominant cell type participating in these aggregate pairs. Many of these pairs also included CD16+ monocytes, which could account for apparent elevations of intermediate monocytes. Additionally, intermediate monocytes and monocyte aggregates were the predominant cell type to adhere to TNF-α and IL-17A-stimulated dermal endothelium. Ingenuity Pathway Analysis (IPA) demonstrated that monocyte aggregates have a distinct transcriptional profile from singlet monocytes and monocytes following plastic adhesion, suggesting that circulating monocyte responses to aggregation are not fully accounted for by homotypic adhesion, and that further factors influence their functionality. qRT-PCR Gene Expression Profiling - 30 Samples Analyzed, 10 biological replicates, 10 Control Samples, 20 Test Samples
Project description:Previous studies suggest that monocytes are an important contributor to tuberculosis (TB)-specific immune signatures in blood. Here we carried out single-cell profiling of classical CD14+CD16- and intermediate CD14+CD16+ monocytes in paired blood samples of active TB (ATB) patients at diagnosis and end-treatment. At diagnosis, ATB patients displayed upregulation of interferon signaling genes that significantly overlapped with previously reported blood TB signatures in both CD14+ subsets. In ATB diagnosis, we identified additional transcriptomic and functional changes in intermediate CD14+CD16+ monocytes, such as the upregulation of inflammatory and MHC-II genes, and increased capacity to activate T cells, reflecting overall increased activation in this population. Single-cell transcriptomics revealed that distinct subsets of intermediate CD14+CD16+ monocytes were responsible for each gene signature, indicating significant functional heterogeneity within this population. Finally, we observed that transcriptomic changes in CD14+ monocytes were transient, as they were no longer observed in the same ATB patients mid-treatment, suggesting they are associated with disease resolution.
Project description:Psoriasis patients exhibit an increased risk of death by cardiovascular disease (CVD) and have elevated levels of circulating intermediate (CD14++CD16+) monocytes. This elevation could represent evidence of monocyte dysfunction in psoriasis patients at risk of CVD, as increases in circulating CD14++CD16+ monocytes are predictive of myocardial infarction and death. An elevation in the CD14++CD16+ cell population has been previously reported in patients with psoriatic disease, which has been confirmed in the cohort of our human psoriasis patients. CD16 expression was induced in CD14++CD16neg classical monocytes following plastic adhesion, which also elicited enhanced β2 but not β1 integrin surface expression, suggesting increased adhesive capacity. Indeed, we found that psoriasis patients have increased monocyte aggregation among circulating PBMCs which is recapitulated in the KC-Tie2 murine model of psoriasis. Visualization of human monocyte aggregates using imaging cytometry revealed that classical CD14++CD16neg monocytes are the predominant cell type participating in these aggregate pairs. Many of these pairs also included CD16+ monocytes, which could account for apparent elevations of intermediate monocytes. Additionally, intermediate monocytes and monocyte aggregates were the predominant cell type to adhere to TNF-α and IL-17A-stimulated dermal endothelium. Ingenuity Pathway Analysis (IPA) demonstrated that monocyte aggregates have a distinct transcriptional profile from singlet monocytes and monocytes following plastic adhesion, suggesting that circulating monocyte responses to aggregation are not fully accounted for by homotypic adhesion, and that further factors influence their functionality.