Project description:This microarray contains expression data for two GBM tissue samples, four GSC cultures grown as spheres and one NFC culture grown as spheres Total RNA was isolated from GSC cultures and GBM tissues
Project description:The DNA methylation profiles of Glioma Stem Cell (GSC) lines were investigated in order to find the stem cell signature associated to glioblastoma (GBM). This goal was achieved through the comparison of GSC methylation data with FFPE-GBM biopsies and human foetal Neural Stem Cell (NSC) lines profiles.
Project description:The DNA methylation profiles of Glioma Stem Cell (GSC) lines were investigated in order to find the stem cell signature associated to glioblastoma (GBM). This goal was achieved through the comparison of GSC methylation data with FFPE-GBM biopsies and human foetal Neural Stem Cell (NSC) lines profiles. GSC lines: 3 (GBM2, G144, G166). FFPE-GBM biopsy pool: FFPE-GBM pool: 1 pool from 5 GBM biopsies. Human foetal NSC lines: 2 (CB660 from forebrain; CB660SP form spinal cord). Methylated DNA from each sample was enriched with the immunoprecipitation method using 5-methylcytosine antibody (Eurogentec). Immunoprecipitated DNA (IP-DNA) and total DNA were labeled and hybridized on Agilent Human CpG Island ChIP-on-Chip Microarray 244K. IP-DNA were labeled with Cy5 while the matching total DNA were labeled with Cy3.
Project description:This microarray contains expression data for two GBM tissue samples, four GSC cultures grown as spheres and one NFC culture grown as spheres
Project description:Primary glioblastoma (GBM) cultures vary with respect to differentiation competency. We sought to identify putative transcription factors necessary for the differentiation of GBM cultures. In this dataset, we include expression data obtained from 2 human-fetal neural stem cell (HF-NS) cultures and 2 GBM stem cell (GSC) cultures. We assessed changes in gene expression from 3 timepoints during an in vitro differentiation protocol.
Project description:Malignant glioblastoma (GBM) is a highly aggressive brain tumor with a dismal prognosis and limited therapeutic options. Genomic profiling of GBM samples in the TCGA database has identified four molecular subtypes (Proneural, Neural, Classical and Mesenchymal), which may arise from different glioblastoma stem-like cell (GSC) populations. In the present study, we identify two GSC populations that produce GBM tumors by subcutaneous and intracranial injection with identical histological features. Gene expression analysis revealed that xenografts of GSCs grown as spheroid cultures had a Classical molecular subtype similar to that of bulk tumor cells. In contrast xenografts of GSCs grown as adherent cultures on laminin-coated plates expressed a Mesenchymal gene signature. Adherent GSC-derived xenografts had high STAT3 and ANGPTL4 expression as well as enrichment for stem cell markers, transcriptional networks and pro-angiogenic markers characteristic of the Mesenchymal subtype. Examination of clinical samples from GBM patients showed that STAT3 expression was directly correlated with ANGPTL4 expression, and that increased expression of these genes correlated with poor patient survival and performance. A pharmacological STAT3 inhibitor abrogated STAT3 binding to the ANGPTL4 promoter and exhibited anticancer activity in vivo. Taken together, we identified two distinct GSC populations that produce histologically identical tumors but with very different gene expression patterns, and a STAT3/ ANGPTL4 pathway in glioblastoma that may serve as a target for therapeutic intervention. 2 samples of each variable were analyzed. Cells were cultured under normal adherent conditon (Bulk tumor cells), non-adherent plates with stem cell medium (Sp-GSC) or laminin-coated plates with stem cell medium (Ad-GSC). Xenografts were generated in NSG mice by subcutaneous inoculation.
Project description:Malignant glioblastoma (GBM) is a highly aggressive brain tumor with a dismal prognosis and limited therapeutic options. Genomic profiling of GBM samples in the TCGA database has identified four molecular subtypes (Proneural, Neural, Classical and Mesenchymal), which may arise from different glioblastoma stem-like cell (GSC) populations. In the present study, we identify two GSC populations that produce GBM tumors by subcutaneous and intracranial injection with identical histological features. Gene expression analysis revealed that xenografts of GSCs grown as spheroid cultures had a Classical molecular subtype similar to that of bulk tumor cells. In contrast xenografts of GSCs grown as adherent cultures on laminin-coated plates expressed a Mesenchymal gene signature. Adherent GSC-derived xenografts had high STAT3 and ANGPTL4 expression as well as enrichment for stem cell markers, transcriptional networks and pro-angiogenic markers characteristic of the Mesenchymal subtype. Examination of clinical samples from GBM patients showed that STAT3 expression was directly correlated with ANGPTL4 expression, and that increased expression of these genes correlated with poor patient survival and performance. A pharmacological STAT3 inhibitor abrogated STAT3 binding to the ANGPTL4 promoter and exhibited anticancer activity in vivo. Taken together, we identified two distinct GSC populations that produce histologically identical tumors but with very different gene expression patterns, and a STAT3/ ANGPTL4 pathway in glioblastoma that may serve as a target for therapeutic intervention.
Project description:We compared whole genome expression profiles of GSCs with normal human cortex, human neural stem cells (hNSC) from fetal cortex, glioblastoma (GBM) primary, and recurrent tumors to find GSC-specific plasma membrane transcripts. All of the expression profiles were batch normalized by a robust multichip average (RMA) algorithm using Geospiza GeneSifter (PerkinElmer) online microarray database and analysis software. The data was then exported into Microsoft Office Excel 2010 and organized for GSC transcripts with raw intensity values 10 fold or higher over normal brain, hNSCs, GBM primary and recurrent tumor samples. The reverse sorting algorithm was done to obtain downregulated GSC trascripts.
Project description:To identify new therapeutic targets for Glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 "knockout" (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers). In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit Cyclin B-CDK1 activity via CDK1-Tyr15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, likely as a result of oncogenic signaling, causing GBM-specific lethality. A whole-genome CRISPR-Cas9 knockout screens targeting over 18,000 genes using the all-in-one LV-sgRNA:Cas9 platform system were performed using a âshot gunâ approach by transducing 2 GBM patient-derived isolates and 2 human neural stem cell isolates with the pool library (2 biological replicates), and cultures were outgrown for ~3 weeks. The end time point of each screen was compared to day 0 in order to determine which sgRNAs were overrepresented or underrepresented in the population.
Project description:Glioblastoma (GBM) is the most frequent and deadly primary malignant brain tumor. Hallmarks are extensive intra- and inter-tumor heterogeneity and highly invasive growth, which provide great challenges for treatment. Efficient therapy is lacking for GBM and the majority of patients survive less than one year from diagnosis. GBM progression and recurrence is caused by treatment-resistant glioblastoma stem cells (GSCs). GSC cultures are considered important models to use in target identification and drug screening. The current state of the art method to isolate and maintain GSC cultures that faithfully mimic the primary tumor, is to use serum-free (SF) media conditions developed for neural stem cells (NSCs). Here we have investigated the outcome of explanting 230 consecutively collected GBM patient samples under both SF and standard, serum-containing media conditions. The establishment of maintainable SF cultures (SFCs) was most frequent, but for a subgroup of GBM specimens a viable culture could only be established in serum-containing media, called exclusive serum culture (ESC). ESCs expressed nestin and SOX2, and displayed all functional characteristics of GSCs, i.e. extended proliferation, sustained self-renewal and orthotopic tumor initiation. Once adapted to the in vitro milieu they were also sustainable in SF media. Molecular analyses showed that ESCs formed a discrete group that was most related to the mesenchymal GBM subtype. This distinct subgroup of GBM that had evaded modeling under SF conditions provide unique cell models of GBM intertumor heterogeneity.