Project description:Genome-wide analysis of histone modification (H2AZ, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3 and H3K9me3), protein-DNA binding (TAF1, P300, Pou5f1 and Nanog), cytosine methylation and transcriptome data in mouse and human ES cells and pig iPS cells We generated histone modification data (H2AZ, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3 and H3K9me3) and protein-DNA binding data (TAF1, P300, Pou5f1 and Nanog) using Chromatin Immunoprecipitation followed by short sequencing (ChIP-seq), cytosine methylation data using methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq) and DNA digestion by methyl-sensitive restriction enzymes followed by sequencing (MRE-seq), transcriptome data with RNA short sequencing (RNA-seq) in human embryonic stem cells, mouse embryonic stem cells, pig induced pluripotent stem cells and mouse embryonic stem cells under activin-A-induced-differentiation. Examination of 8 histone modifications, 4 protein-DNA binding, cytosine methylation and transcriptome in human embryonic stem cells, mouse embryonic stem cells, pig induced pluripotent stem cells and mouse embryonic stem cells under activin-A-induced-differentiation.
Project description:Genome-wide analysis of histone modification (H2AZ, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3 and H3K9me3), protein-DNA binding (TAF1, P300, Pou5f1 and Nanog), cytosine methylation and transcriptome data in mouse and human ES cells and pig iPS cells We generated histone modification data (H2AZ, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3 and H3K9me3) and protein-DNA binding data (TAF1, P300, Pou5f1 and Nanog) using Chromatin Immunoprecipitation followed by short sequencing (ChIP-seq), cytosine methylation data using methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq) and DNA digestion by methyl-sensitive restriction enzymes followed by sequencing (MRE-seq), transcriptome data with RNA short sequencing (RNA-seq) in human embryonic stem cells, mouse embryonic stem cells, pig induced pluripotent stem cells and mouse embryonic stem cells under activin-A-induced-differentiation.
Project description:Aberrational epigenetic marks are believed to play a major role in establishing the abnormal features of cancer cells. Rational use and development of drugs aimed at epigenetic processes requires an understanding of the range, extent, and roles of epigenetic reprogramming in cancer cells. Using ChIP-chip and MeDIP-chip approaches, we localized well-established and prevalent epigenetic marks (H3K27me3, H3K4me3, H3K9me3, DNA methylation) on a genome scale in several lines of putative glioma stem cells (brain tumor stem cells, BTSCs) and, for comparison, normal human fetal neural stem cells (fNSCs). We determined a substantial M-bM-^@M-^\coreM-bM-^@M-^] set of promoters possessing each mark in every surveyed BTSC cell type, which largely overlapped the corresponding fNSC sets. However, there was substantial diversity among cell types in mark localization. We observed large differences among cell types in total number of H3K9me3+ positive promoters and peaks and in broad modification areas for H3K27me3 and, to a lesser extent, H3K9me3. We verified that a change in a broad modification (defined as >50 kb peak length) affected gene expression of CACNG7. We detected large numbers of bivalent promoters, but most bivalent promoters did not display direct overlap of contrasting epigenetic marks, but rather occupied nearby regions of the proximal promoter. There were significant differences in the sets of promoters bearing bivalent marks in the different cell types and few consistent differences between fNSCs and BTSCs. Overall, our M-bM-^@M-^\core setM-bM-^@M-^] data establishes sets of potential therapeutic targets, but the diversity in sets of sites and broad modifications among cell types underscores the need to carefully consider BTSC subtype variation in epigenetic therapy. Our results point toward substantial differences among cell types in the activity of the production/maintenance systems for H3K9me3 and for broad regions of modification (H3K27me3 or H3K9me3). Finally, the unexpected diversity in bivalent promoter sets among these multipotent cells indicates that bivalent promoters may play complex roles in the overall biology of these cells. These results provide key information for forming the basis for future rational drug therapy aimed at epigenetic processes in these cells. ChIP-chip and MeDIP-chip localization of histone modifications and DNA methylation in glioma stem cells and fetal neural stem cells comparison of 4 lines of brain tumor stem cells to each other and to normal fetal neural stem cells
Project description:<p>The primary goal of this study was to collect and analyze genomic data from primary glioblastoma multiforme tumors. Our collaborators at St David's Medical Center (SDMC) obtained informed consent from patients undergoing surgery to remove a tumor in the brain. After consent was obtained, specimens were removed from the operating suite and flash frozen in liquid nitrogen. Tumors were analyzed if they were a grade III (anaplastic astrocytoma) or grade IV glioma (glioblastoma multiforme). Tumors were transported from SDMC to UT Austin, then weighed and homogenized. Chromatin immunoprecipitation was performed for 7 proteins in each tumor (histone modifications H3K4me3, H3K4me1, H3K9ac, H3K9me3, H3K27ac, H3K27me3, and the multifunctional insulator binding protein CTCF) and no-antibody input was also sequenced. An aliquot of tumor material was set aside for isolation of total RNA.</p>
Project description:Epigenetic environment of histone H3.3 on promoters revealed by integration of imaging and genome-scale chromatin and methyl-DNA immunoprecipitation information. Chromatin regions with different transcriptional outputs are distinguished by the deposition of histone variants. Histone H3.3 is incorporated into chromatin in a replication-independent manner; yet the relationship between H3.3 deposition, chromatin environment is incompletely understood. We have integrated imaging and genome-scale chromatin and methyl-DNA immunoprecipitation approaches to investigate the genomic distribution of epitope-tagged H3.3 in relation to histone modifications, DNA methylation and transcription. Results: Imaging shows that H3.3, in contrast to replicative H3.1 or H2B, is enriched in chromatin marked by histone modifications of active genes. A genome-wide survey identifies 1,649 H3.3-enriched promoters, only a subset of which is co-enriched in H3K4me3, H3K9me3 and/or H3K27me3, with a preference for H3K4me3, corroborating imaging data. H3.3-enriched promoters are depleted of H3.3 at the TSS in a transcription-independent manner. H3.3 is found predominantly on CpG-rich unmethylated promoters, creating a condition favourable for transcription. In undifferentiated mesenchymal stem cells, H3.3 target genes are linked to signaling and mesodermal differentiation, suggesting that H3.3 may be a mark of lineage priming. Conclusions: A minor fraction of H3.3 is targeted to promoters, which are predominantly CpG-rich, DNA unmethylated and devoid of detectable trimethylated H3K4, K9 and K27. Among H3.3 target promoters co-marked by methylated H3, H4K4me3 is preferred, with or without H3K27me3, arguing that in mesenchymal stem cells H3.3 marks transcriptionally active or potentially active promoters. Key words: Imaging, ChIP-chip, MeDIP-chip, histone H3.3, mesenchymal stem cells ChIP-chip and MeDIP-chip experiments: Performed with two independent biological replicates. Gene expression profiling experiments: Total RNA obtained from H3.3-EGFP transfected or empty-EGFP transfected mesenchymal stem cells compared to untransfected mesenchymal stem cells. Raw expression data linked below as supplementary file (GSE17053_Illumina_non-normalized_data.txt).
Project description:Aberrational epigenetic marks are believed to play a major role in establishing the abnormal features of cancer cells. Rational use and development of drugs aimed at epigenetic processes requires an understanding of the range, extent, and roles of epigenetic reprogramming in cancer cells. Using ChIP-chip and MeDIP-chip approaches, we localized well-established and prevalent epigenetic marks (H3K27me3, H3K4me3, H3K9me3, DNA methylation) on a genome scale in several lines of putative glioma stem cells (brain tumor stem cells, BTSCs) and, for comparison, normal human fetal neural stem cells (fNSCs). We determined a substantial “core” set of promoters possessing each mark in every surveyed BTSC cell type, which largely overlapped the corresponding fNSC sets. However, there was substantial diversity among cell types in mark localization. We observed large differences among cell types in total number of H3K9me3+ positive promoters and peaks and in broad modification areas for H3K27me3 and, to a lesser extent, H3K9me3. We verified that a change in a broad modification (defined as >50 kb peak length) affected gene expression of CACNG7. We detected large numbers of bivalent promoters, but most bivalent promoters did not display direct overlap of contrasting epigenetic marks, but rather occupied nearby regions of the proximal promoter. There were significant differences in the sets of promoters bearing bivalent marks in the different cell types and few consistent differences between fNSCs and BTSCs. Overall, our “core set” data establishes sets of potential therapeutic targets, but the diversity in sets of sites and broad modifications among cell types underscores the need to carefully consider BTSC subtype variation in epigenetic therapy. Our results point toward substantial differences among cell types in the activity of the production/maintenance systems for H3K9me3 and for broad regions of modification (H3K27me3 or H3K9me3). Finally, the unexpected diversity in bivalent promoter sets among these multipotent cells indicates that bivalent promoters may play complex roles in the overall biology of these cells. These results provide key information for forming the basis for future rational drug therapy aimed at epigenetic processes in these cells. ChIP-chip and MeDIP-chip localization of histone modifications and DNA methylation in glioma stem cells and fetal neural stem cells
Project description:The conversion of mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells (iPS) by forced expression of Oct4, Sox2 and Klf4 is among the earliest demonstrations of reprogramming to a pluripotent state by forced expression of transcription factors. To gain insights into the chromatin state of genes required for reprogramming, we profiled H3K4me3, H3K27me3 and H3K9me3. DNA was enriched by chromatin immunoprecipitation (ChIP) and analyzed by Solexa sequencing. ChIP was performed using an antibody against H3K4me3, H3K27me3 and H3K9me3.
Project description:Glioblastoma (GBM) is the most aggressive of all primary brain tumours. Here, we perform a multi-omics approach to map the promoter-enhancer interactome and the regulatory landscape of glioblastoma, including RNA-seq, ChIP-seq of histone marks (H3K4me3, H3K27ac, H3K27me3), H3K4me3 HiChIP and ATAC-seq.
Project description:Mechanisms of plasticity to acquire different cell fates are critical for adult stem cell (SC) potential, yet are poorly understood. Reduced global histone methylation is an epigenetic state known to mediate plasticity in cultured embryonic SCs and T cell progenitors. We used mouse hair follicle stem cells (HFSCs) at two different hair cycle stages (early anagen and late catagen) to compare the genome-wide changes in the levels of histone modification marks H3K4me3, H3K9me3, and H3K27me3. Hair follicle stem cells from Early Anagen (EA-HFSCs) and Late Catagen (LC-HFSCs), and their non-HFSCs counterparts (nEA-HFSCs and nLC-HFSCs), were FACS-isolated for Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) analysis of H3K4me3, H3K9me3, and H3K27me3.
Project description:Chromatin, DNA and RNA were extracted from young A. alpina Pajares primary stem leaves. Chromatin and DNA methylation immunoprecipitation experiments were performed using commercially available antibodies and analyzed by Illumina sequencing (ChIP-seq and MeDIP-seq). Transcriptome data were generated by RNA-seq. ChIP-seq analysis of H3K4me3, H3K27me3 and H3K27me1 enrichment profiles and MeDIP-seq analysis of 5mC enrichment profiles in 2 biological replicates. RNA-seq analysis of mRNA levels in 1 biological replicate.