Project description:Post-partum uterine inflammation (endometritis) is associated with lower fertility at both the time of infection and after the inflammation has resolved. It was hypothesized that aberrant DNA methylation may be involved in the sub-fertility associated with post-partum uterine inflammation. The objective of this study was to characterize genome-wide DNA methylation and gene expression in the endometrium of dairy cows with sub-clinical endometritis. Endometrial tissues were obtained at 29 days post-partum (n=12) and Agilent two-colour microarrays were used to characterize transcription and DNA methylation profiles. Analyses revealed 1,856 probes to be differentially expressed in animals with subclinical endometritis (SUI, n=6) compared with control cows (NUI, n=6, P<0.05, Storey Multiple testing correction). No significant associations among DNA methylation and gene expression were detected. Further analysis of gene expression data using GeneGo Metacore and Gene Set Enrichment Analysis identified several pathways and processes enriched in the comparison. Several pathways that are involved in the innate immune response were enriched in SUI cows. Consistent with the presence of microorganisms in the uterus, there was enrichment for the Toll-like receptor (TLR) signaling pathway, including increased expression of the transcription factor NFKB1, the pro-inflammatory cytokines IL1A and IL1B, downstream chemokines, cytokines, and acute phase and antimicrobial proteins in the endometrium of SUI cows. Furthermore, the chemokine signaling pathway was enriched in SUI cows, with increased expression of genes that attract cells of the innate immune system. Increased expression of IL-8 and CXCL6, chemotactic factors for recruitment of neutrophils along with the immune cell surface marker PTPRC in SUI cows is consistent with the greater number of polymorphonuclear cells present in the uterus of these cows. Several antimicrobial peptides (LAP, TAP, DEFB1, DEFB10, DEFB103B, DEFB7) and acute phase proteins, including SAA3, LBP, and the complement gene CFB, had greater expression in SUI cows. Gene expression profiles in cows with subclinical endometritis in this study indicate that the immune response is activated, potentially resulting in a local pro-inflammatory environment in the uterus. If this period of inflammation is prolonged, it could result in tissue damage or failure to complete involution of the uterus, which may create a sub-optimal environment for future pregnancy. Agilent two-colour microarrays were used to characterize DNA methylation profiles in cows with subclinical endometritis (SUI, n=6) compared to control cows (NUI, n=6). Endometrial tissues (caruncular, intercaruncular) were obtained at 29 days post-partum.
Project description:Post-partum uterine inflammation (endometritis) is associated with lower fertility at both the time of infection and after the inflammation has resolved. It was hypothesized that aberrant DNA methylation may be involved in the sub-fertility associated with post-partum uterine inflammation. The objective of this study was to characterize genome-wide DNA methylation and gene expression in the endometrium of dairy cows with sub-clinical endometritis. Endometrial tissues were obtained at 29 days post-partum (n=12) and Agilent two-colour microarrays were used to characterize transcription and DNA methylation profiles. Analyses revealed 1,856 probes to be differentially expressed in animals with subclinical endometritis (SUI, n=6) compared with control cows (NUI, n=6, P<0.05, Storey Multiple testing correction). No significant associations among DNA methylation and gene expression were detected. Further analysis of gene expression data using GeneGo Metacore and Gene Set Enrichment Analysis identified several pathways and processes enriched in the comparison. Several pathways that are involved in the innate immune response were enriched in SUI cows. Consistent with the presence of microorganisms in the uterus, there was enrichment for the Toll-like receptor (TLR) signaling pathway, including increased expression of the transcription factor NFKB1, the pro-inflammatory cytokines IL1A and IL1B, downstream chemokines, cytokines, and acute phase and antimicrobial proteins in the endometrium of SUI cows. Furthermore, the chemokine signaling pathway was enriched in SUI cows, with increased expression of genes that attract cells of the innate immune system. Increased expression of IL-8 and CXCL6, chemotactic factors for recruitment of neutrophils along with the immune cell surface marker PTPRC in SUI cows is consistent with the greater number of polymorphonuclear cells present in the uterus of these cows. Several antimicrobial peptides (LAP, TAP, DEFB1, DEFB10, DEFB103B, DEFB7) and acute phase proteins, including SAA3, LBP, and the complement gene CFB, had greater expression in SUI cows. Gene expression profiles in cows with subclinical endometritis in this study indicate that the immune response is activated, potentially resulting in a local pro-inflammatory environment in the uterus. If this period of inflammation is prolonged, it could result in tissue damage or failure to complete involution of the uterus, which may create a sub-optimal environment for future pregnancy.
Project description:Post-partum uterine inflammation (endometritis) is associated with lower fertility at both the time of infection and after the inflammation has resolved. It was hypothesized that aberrant DNA methylation may be involved in the sub-fertility associated with post-partum uterine inflammation. The objective of this study was to characterize genome-wide DNA methylation and gene expression in the endometrium of dairy cows with sub-clinical endometritis. Endometrial tissues were obtained at 29 days post-partum (n=12) and Agilent two-colour microarrays were used to characterize transcription and DNA methylation profiles. Analyses revealed 1,856 probes to be differentially expressed in animals with subclinical endometritis (SUI, n=6) compared with control cows (NUI, n=6, P<0.05, Storey Multiple testing correction). No significant associations among DNA methylation and gene expression were detected. Further analysis of gene expression data using GeneGo Metacore and Gene Set Enrichment Analysis identified several pathways and processes enriched in the comparison. Several pathways that are involved in the innate immune response were enriched in SUI cows. Consistent with the presence of microorganisms in the uterus, there was enrichment for the Toll-like receptor (TLR) signaling pathway, including increased expression of the transcription factor NFKB1, the pro-inflammatory cytokines IL1A and IL1B, downstream chemokines, cytokines, and acute phase and antimicrobial proteins in the endometrium of SUI cows. Furthermore, the chemokine signaling pathway was enriched in SUI cows, with increased expression of genes that attract cells of the innate immune system. Increased expression of IL-8 and CXCL6, chemotactic factors for recruitment of neutrophils along with the immune cell surface marker PTPRC in SUI cows is consistent with the greater number of polymorphonuclear cells present in the uterus of these cows. Several antimicrobial peptides (LAP, TAP, DEFB1, DEFB10, DEFB103B, DEFB7) and acute phase proteins, including SAA3, LBP, and the complement gene CFB, had greater expression in SUI cows. Gene expression profiles in cows with subclinical endometritis in this study indicate that the immune response is activated, potentially resulting in a local pro-inflammatory environment in the uterus. If this period of inflammation is prolonged, it could result in tissue damage or failure to complete involution of the uterus, which may create a sub-optimal environment for future pregnancy.
Project description:Post-partum uterine inflammation (endometritis) is associated with lower fertility at both the time of infection and after the inflammation has resolved. It was hypothesized that aberrant DNA methylation may be involved in the sub-fertility associated with post-partum uterine inflammation. The objective of this study was to characterize genome-wide DNA methylation and gene expression in the endometrium of dairy cows with sub-clinical endometritis. Endometrial tissues were obtained at 29 days post-partum (n=12) and Agilent two-colour microarrays were used to characterize transcription and DNA methylation profiles. Analyses revealed 1,856 probes to be differentially expressed in animals with subclinical endometritis (SUI, n=6) compared with control cows (NUI, n=6, P<0.05, Storey Multiple testing correction). No significant associations among DNA methylation and gene expression were detected. Further analysis of gene expression data using GeneGo Metacore and Gene Set Enrichment Analysis identified several pathways and processes enriched in the comparison. Several pathways that are involved in the innate immune response were enriched in SUI cows. Consistent with the presence of microorganisms in the uterus, there was enrichment for the Toll-like receptor (TLR) signaling pathway, including increased expression of the transcription factor NFKB1, the pro-inflammatory cytokines IL1A and IL1B, downstream chemokines, cytokines, and acute phase and antimicrobial proteins in the endometrium of SUI cows. Furthermore, the chemokine signaling pathway was enriched in SUI cows, with increased expression of genes that attract cells of the innate immune system. Increased expression of IL-8 and CXCL6, chemotactic factors for recruitment of neutrophils along with the immune cell surface marker PTPRC in SUI cows is consistent with the greater number of polymorphonuclear cells present in the uterus of these cows. Several antimicrobial peptides (LAP, TAP, DEFB1, DEFB10, DEFB103B, DEFB7) and acute phase proteins, including SAA3, LBP, and the complement gene CFB, had greater expression in SUI cows. Gene expression profiles in cows with subclinical endometritis in this study indicate that the immune response is activated, potentially resulting in a local pro-inflammatory environment in the uterus. If this period of inflammation is prolonged, it could result in tissue damage or failure to complete involution of the uterus, which may create a sub-optimal environment for future pregnancy. 12 animals were enrolled in this study, 2 samples from each animal were used for microarray analysis consisting of caruncular and intercaruncular endometrium. A reference design was used for hybridisation, whereby each of the 24 samples were hybridised to individual microarrays along with a pooled reference sample. The reference sample was generated by taking equal concentrations of each of the experimental samples.
Project description:Clinical or subclinical endometritis could affect the cow fertility by disturbing the molecular milieu of the uterine environment. We used a global gene expression approach to understand the effect of clinical and subclinical endometritis on endometrial transcriptome profiles of cows
Project description:Combining the cytological as well as gene expression changes in the endometrium is required to understand the effects of subclinical endometritis on endometrium as well as embryo. Hence, the present study was aimed to investigate the gene expression profiles of subclinical endometrium as well the effect of the inflamed environment on the gene expression profile of the developing preimplantative embryo.