Project description:Oligodendrocytes undergo extensive changes as they differentiate from progenitors into myelinating cells. To better understand the; molecular mechanisms underlying this transformation, we performed a comparative analysis using gene expression profiling of A2B5+; oligodendrocyte progenitors and O4+ oligodendrocytes. Cells were sort-purified ex vivo from postnatal rat brain using flow cytometry. Using Affymetrix microarrays, 1707 transcripts were identified with a more than twofold increase in expression inO4+oligodendrocytes. Many genes required for oligodendrocyte differentiation were upregulated in O4+ oligodendrocytes, including numerous genes encoding; myelin proteins. Transcriptional changes included genes required for cell adhesion, actin cytoskeleton regulation, and fatty acid and; cholesterol biosynthesis. At the O4+ stage, there was an increase in expression of a novel proline-rich transmembrane protein (Prmp). Localized to the plasma membrane, Prmp displays adhesive properties that may be important for linking the extracellular matrix to the; actin cytoskeleton. Together, our results highlight the usefulness of this discovery-driven experimental strategy to identify genes relevant; to oligodendrocyte differentiation and myelination. Experiment Overall Design: Whole brain dissociates were prepared from one litter of 10 male postnatal day 7 rat pups for each of the 5 A2B5 bioligcal replicates and the 4 O4+ bioligical replicates. Total RNA was extracted from single A2B5+ and single O4+ cells sorted directly from postnatal day7 rat whole brain dissociates using flow cytometry.
Project description:This study provides an overview of the transcriptional signature of oligodendrocyte progenitor cells (OPCs) exposed to the CSF collected from multiple sclerosis patients with either a relapsing remitting disease course (RRMS) or a confirmed primary progressive diagnosis (PPMS). Using an Affymetrix microarray we were able to detect a set of common and unique genes for each treatment group. Gene ontology analysis revealed a common group of genes involved in protein transport, actin dynamics and response to stress and DNA damage, while the RRMS-specific genes were grouped according to protein complex biogenesis, nuclear transport and RNA processing. The transcriptional signature of progenitors exposed to PPMS was characterized by an up-regulation of the pro-differentiation adhesion molecule Lgals3. We confirmed increased protein levels of its gene product,product; galectin-3 in proliferating OPCs incubated with CSF from PPMS patients and also found a four-fold increase in mRNA transcript levels of galectin-3 in human post-mortem normal-appearing white matter samples of primary progressive MS patients when compared to non-neurological controls. This study will help to better understand the common and specific transcriptional changes induced in the different subtypes of MS and therefore find more specific molecular targets for each disease subtype. Comparison of transcriptional signature by microarray analysis of OPCs treated with RRMS and PPMS CSF.
Project description:Objective: To investigate how anti-CD20 B cell-depleting monoclonal antibodies (ɑCD20 mAb) alter the composition and gene expression of immune cells in meningeal ectopic lymphoid tissue (mELT) and the CSF in a murine model of Multiple Sclerosis (MS). Methods: We utilized a spontaneous chronic experimental autoimmune encephalomyelitis (EAE) model of mice with mutant T and B cell receptors specific for myelin oligodendrocyte glycoprotein (MOG), which develop meningeal inflammatory infiltrates resembling those described in Multiple Sclerosis (MS). We studied the changes in cell composition and gene expression after anti-CD20 treatment in mELT and CSF.
Project description:This study provides an overview of the transcriptional signature of oligodendrocyte progenitor cells (OPCs) exposed to the CSF collected from multiple sclerosis patients with either a relapsing remitting disease course (RRMS) or a confirmed primary progressive diagnosis (PPMS). Using an Affymetrix microarray we were able to detect a set of common and unique genes for each treatment group. Gene ontology analysis revealed a common group of genes involved in protein transport, actin dynamics and response to stress and DNA damage, while the RRMS-specific genes were grouped according to protein complex biogenesis, nuclear transport and RNA processing. The transcriptional signature of progenitors exposed to PPMS was characterized by an up-regulation of the pro-differentiation adhesion molecule Lgals3. We confirmed increased protein levels of its gene product,product; galectin-3 in proliferating OPCs incubated with CSF from PPMS patients and also found a four-fold increase in mRNA transcript levels of galectin-3 in human post-mortem normal-appearing white matter samples of primary progressive MS patients when compared to non-neurological controls. This study will help to better understand the common and specific transcriptional changes induced in the different subtypes of MS and therefore find more specific molecular targets for each disease subtype.
Project description:The Norway rat has important impacts on our life. They are amongst the most used research subjects, resulting in ground-breaking advances. At the same time, wild rats live in close association with us, leading to various adverse interactions. In face of this relevance, it is surprising how little is known about their natural behaviour. While recent laboratory studies revealed their complex social skills, little is known about their social behaviour in the wild. An integration of these different scientific approaches is crucial to understand their social life, which will enable us to design more valid research paradigms, develop more effective management strategies, and to provide better welfare standards. Hence, I first summarise the literature on their natural social behaviour. Second, I provide an overview of recent developments concerning their social cognition. Third, I illustrate why an integration of these areas would be beneficial to optimise our interactions with them.
Project description:BackgroundMurine kobuviruses (MuKV) are newly recognized picornaviruses first detected in murine rodents in the USA in 2011. Little information on MuKV epidemiology in murine rodents is available. Therefore, we conducted a survey of the prevalence and genomic characteristics of rat kobuvirus in Guangdong, China.ResultsFecal samples from 223 rats (Rattus norvegicus) were collected from Guangdong and kobuviruses were detected in 12.6% (28) of samples. Phylogenetic analysis based on partial 3D and complete VP1 sequence regions showed that rat kobuvirus obtained in this study were genetically closely related to those of rat/mouse kobuvirus reported in other geographical areas. Two near full-length rat kobuvirus genomes (MM33, GZ85) were acquired and phylogenetic analysis of these revealed that they shared very high nucleotide/amino acids identity with one another (95.4%/99.4%) and a sewage-derived sequence (86.9%/93.5% and 87.5%/93.7%, respectively). Comparison with original Aichivirus A strains, such human kobuvirus, revealed amino acid identity values of approximately 80%.ConclusionOur findings indicate that rat kobuvirus have distinctive genetic characteristics from other Aichivirus A viruses. Additionally, rat kobuvirus may spread via sewage.
Project description:Inflammation is a key component of pathological angiogenesis. Here we induce cornea neovascularisation using sutures placed into the cornea, and sutures are removed to induce a regression phase. We used whole transcriptome microarray to monitor gene expression profies of several genes