Project description:Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with marked heterogeneity in several aspects including pathological processes. Four histopathological patterns of MS have been described. Pattern II is characterized by antibody and complement deposition. MS is considered a prototypic T cell-mediated disease, but until now the study of pathogenic T cells has encountered major challenges, most importantly the limited access of brain-infiltrating T cells. Here, we used next generation sequencing to identify clonally expanded T cells in demyelinating pattern II brain autopsy lesions and subsequently isolated these as T cell clones from autologous cerebrospinal fluid. The functional characterization shows that T cells releasing Th2 cytokines and able to provide B cell help dominate the T cell infiltrate in pattern II brain lesions. Our data provide the first functional evidence for a role of Th2/Tc2 cells in pattern II MS. Two stimulated CD4+ Th2 brain infiltrating T cell clones compared with stimulated circulaiting memory CD4+ T cells and two stimulated CD8+ T cell clones (one Tc1 and one Tc2) compared with each other.
Project description:Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with marked heterogeneity in several aspects including pathological processes. Four histopathological patterns of MS have been described. Pattern II is characterized by antibody and complement deposition. MS is considered a prototypic T cell-mediated disease, but until now the study of pathogenic T cells has encountered major challenges, most importantly the limited access of brain-infiltrating T cells. Here, we used next generation sequencing to identify clonally expanded T cells in demyelinating pattern II brain autopsy lesions and subsequently isolated these as T cell clones from autologous cerebrospinal fluid. The functional characterization shows that T cells releasing Th2 cytokines and able to provide B cell help dominate the T cell infiltrate in pattern II brain lesions. Our data provide the first functional evidence for a role of Th2/Tc2 cells in pattern II MS.
Project description:Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system with marked heterogeneity in several aspects including pathological processes. Four histopathological patterns of MS have been described. Pattern II is characterized by infiltrating macrophages and T-cells and by antibody and complement deposition. Transcriptome analysis of three patern II demyelinating brain lesions from a multiple sclerosis patient using RNA sequencing demonstrated the presence of mRNA transcripts for genes specific of activated macrophages, T and B cells as well as genes coding for immunoglobulins, complement proteins and some pattern II associated proteins, providing additional evidence supporting pattern II demyelination. Examination of 3 different demyelinating lesions identified by Immunohistopathology.
Project description:Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system with marked heterogeneity in several aspects including pathological processes. Four histopathological patterns of MS have been described. Pattern II is characterized by infiltrating macrophages and T-cells and by antibody and complement deposition. Transcriptome analysis of three patern II demyelinating brain lesions from a multiple sclerosis patient using RNA sequencing demonstrated the presence of mRNA transcripts for genes specific of activated macrophages, T and B cells as well as genes coding for immunoglobulins, complement proteins and some pattern II associated proteins, providing additional evidence supporting pattern II demyelination.
Project description:Canine distemper virus (CDV)-induced demyelinating leukoencephalitis (CDV-DL) in dogs is a translational animal model for human demyelinating diseases such as multiple sclerosis. The aim of this study was to perform an assumption-free microarray analysis of gene expression in different subgroups of CDV-DL as compared to normal controls. Dogs were classified into normal controls (group 1), acute CDV-DL lesions with CDV within the brain but without demyelination and inflammation (group 2), subacute lesions with demyelination but without inflammation (group 3), and subacute to chronic lesions with demyelination and inflammation (group 4).
Project description:Demyelinating disease is a disease of the nervous system in which the nerve demyelinating is the main or primary lesion, and the axon, cell body and glia are relatively lightly damaged. It can occur in the central nervous system or the peripheral nervous system. The demyelinating diseases of central nervous system are represented by multiple sclerosis (MS) and neuromyelitis optica (NMO) while Guillain-Barre Syndrome (GBS) is a demyelinating disease of the peripheral nervous system. We aimed to identify the key proteins in demyelinating disease and describe the proteomic pattern of MS, GBS and NMO. This study used high-resolution liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), in combination with quantitative 10-plex tandem mass tag labeling, to profile protein changes in MS, GBS and NMO.
Project description:Neuroprotective, anti-inflammatory and remyelinating properties of androgens are well-characterized in demyelinated male mice and men suffering from multiple sclerosis. However, androgen effects mediated by the androgen receptor AR, have been only poorly studied in females who make low androgen levels. Here, we show a predominant microglial AR expression in demyelinated lesions from female mice and women with multiple sclerosis, but virtually undetectable AR expression in lesions from male animals and men with multiple sclerosis. In female mice, androgens and estrogens act in a synergistic way while androgens drive microglia response towards regeneration. Transcriptomic comparisons of demyelinated mouse spinal cords indicate that, regardless of the sex, androgens up-regulate genes related to neuronal function integrity and myelin production. Depending on the sex, androgens down-regulate genes related to the immune system in females and lipid catabolism in males. Thus, androgens are required for proper myelin regeneration in females and therapeutic approaches of demyelinating diseases need to consider male-female differences.
Project description:Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. During active multiple sclerosis foamy macrophages and microglia, containing degenerated myelin, are abundantly found in demyelinated areas. Recent studies have described an altered macrophage phenotype after myelin internalization. However, by which mechanisms myelin affects the phenotype of macrophages and how this phenotype can influence lesion progression is unclear. Here we demonstrate, by using genome wide gene expression analysis, that myelin-phagocytosing macrophages have an enhanced expression of genes in pathways involved in migration, phagocytosis and inflammation. More interestingly, we show that myelin internalization induces the expression of genes involved in liver X receptor signaling and cholesterol efflux. In vitro validation shows that myelin-phagocytosing macrophages indeed have an increased capacity to dispose intracellular cholesterol. Additionally, myelin suppresses the production of pro-inflammatory mediators, like nitric oxide and IL-6, by macrophages in a similar manner as a liver X receptor agonist. Our data show that myelin modulates the phenotype of macrophages by nuclear receptor activation, which may subsequently affect lesion progression in multiple sclerosis. Rat peritoneal macrophages were left untreated (n=5) or treated with isolated myelin (n=5) for 3 days. Both untreated and myelin-treated macrophages were subsequently stimulated with IFNM-RM-/ and IL1-M-NM-2 for 9 hours.