Project description:Non mitotic tumor cells are resistant to conventional chemotherapeutic drugs. However, the mechanisms underlying this phenomenon remain unclear. Here, we found a population that is viable but remains in the G1 phase for an extended period of time (up to 48 h) by Long-term time-lapse observations in Fucci-HCT116 cells and then we conducted DNA microarray-based comparative analyses between the RR (the long-term G1-arrested cells) and R (the G1-arrested cells) fractions, to determine the molecular basis of the G1 arrest/maintenance mechanism. This study is related to GSE34940.
Project description:Non mitotic tumor cells are resistant to conventional chemotherapeutic drugs. However, the mechanisms underlying this phenomenon remain unclear. Here, we found a population that is viable but remains in the G1 phase for an extended period of time (up to 48 h) by Long-term time-lapse observations in Fucci-HCT116 cells and then we conducted DNA microarray-based comparative analyses between the RR (the long-term G1-arrested cells) and R (the G1-arrested cells) fractions, to determine the molecular basis of the G1 arrest/maintenance mechanism. This study is related to GSE34940. The labeled cRNAs were hybridized on 4X44K v2 Agilent Whole Human Genome dual color Microarrays (G4845A) in two dye swap experiments, resulting in four individual microarrays.
Project description:<p>Cell size and the cell cycle are intrinsically coupled and abnormal increases in cell size are associated with senescence and permanent cell cycle arrest. The mechanism by which overgrowth primes cells to withdraw from the cell cycle remains unknown. We investigate this here using CDK4/6 inhibitors that arrest cell cycle progression during G0/G1 and are used in the clinic to treat ER+/HER2- metastatic breast cancer. We demonstrate that CDK4/6 inhibition promotes cellular overgrowth during G0/G1, causing p38MAPK-p53-p21-dependent cell cycle withdrawal. We find that cell cycle withdrawal is triggered by two waves of p21 induction. First, overgrowth during a long-term G0/G1 arrest induces an osmotic stress response. This stress response produces the first wave of p21 induction. Second, when CDK4/6 inhibitors are removed, a fraction of cells escape long term G0/G1 arrest and enter S-phase where overgrowth-driven replication stress results in a second wave of p21 induction that causes cell cycle withdrawal from G2, or the subsequent G1. We propose a model whereby both waves of p21 induction contribute to promote permanent cell cycle arrest. This model could explain why cellular hypertrophy is associated with senescence and why CDK4/6 inhibitors have long-lasting effects in patients.</p>
Project description:Cell size and the cell cycle are intrinsically coupled and abnormal increases in cell size are associated with senescence and permanent cell cycle arrest. The mechanism by which overgrowth primes cells to withdraw from the cell cycle remains unknown. We investigate this here using CDK4/6 inhibitors that arrest cell cycle progression during G0/G1 and are used in the clinic to treat ER+/HER2- metastatic breast cancer. We demonstrate that CDK4/6 inhibition promotes cellular overgrowth during G0/G1, causing p38MAPK-p53-p21-dependent cell cycle withdrawal. We find that cell cycle withdrawal is triggered by two waves of p21 induction. First, overgrowth during a long-term G0/G1 arrest induces an osmotic stress response. This stress response produces the first wave of p21 induction. Second, when CDK4/6 inhibitors are removed, a fraction of cells escape long term G0/G1 arrest and enter S-phase where overgrowth-driven replication stress results in a second wave of p21 induction that causes cell cycle withdrawal from G2, or the subsequent G1. We propose a model whereby both waves of p21 induction contribute to promote permanent cell cycle arrest. This model could explain why cellular hypertrophy is associated with senescence and why CDK4/6 inhibitors have long-lasting effects in patients.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.
Project description:PurposeWe investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level.MethodsSNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively.ResultsSix of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes.ConclusionsThere is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies.
Project description:Immuno-histochemistry for RelA in breast tumors revealed a range of staining intensity and negative correlation between RelA levels and proliferation-index in estrogen receptor-positive tumors. Conditional expression of RelA arrested proliferation in primary mammary and fallopian tube epithelial cells. RelA dependent CDK4 downregulation was responsible for activating the G1/S checkpoint and cell cycle arrest. RelA target genes, including Interferon Response Factors (IRF), were up-regulated in the arrested cells. Among the IRFs, IRF1 expression correlates with RelA expression. Suppressing IRF1 restored CDK4 levels and rescued RelA-dependent proliferation arrest analogous to abrogating the G1/S checkpoint or restoring CDK4 levels. Apart from cyclins, regulation of CDK4 by the RelA-IRF1 transcriptional network controls proliferation of breast tumors and predicts sensitivity to a CDK4/6 inhibitor.