Project description:Here we prolife prostate cancers derived from GEM models of prostate cancer representative of human prostate cancer Total DNA was isolated from established prostate cancers in 4 GEM models of prostate cancer - PB-MYC, Pten-/-, Pten-/- p53-/-, Pten-/- Rosa26-ERG, and 3 cell lines derived from GEM models including CaP8, MYC CaP, and MPC3 and normalized to wild-type prostate of litter-mate mice of same genetic background strain
Project description:Here we profile prostate cancers derived from GEM models of prostate cancer representative of human prostate cancer Total RNA was isolated from established prostate cancers in 3 GEM models of prostate cancer - PB-MYC, Pten-/-, Pten-/- p53-/-
Project description:Abstract Background. The cellular effects of androgen are transduced through the androgen receptor, which controls the expression of genes that regulate biosynthetic processes, cell growth, and metabolism. Androgen signaling also impacts DNA damage signaling through mechanisms involving gene expression and transcription-associated DNA damaging events. Defining the contributions of androgen signaling to DNA repair is important for understanding androgen receptor function, and it also has important translational implications. Methods. We generated RNA-seq data from multiple prostate cancer lines and used bioinformatic analyses to characterize androgen-regulated gene expression. We compared the results from cell lines with gene expression data from prostate cancer xenografts, and patient samples, to query how androgen signaling and prostate cancer progression influences the expression of DNA repair genes. We performed whole genome sequencing to help characterize the status of the DNA repair machinery in widely used prostate cancer lines. Finally, we tested a DNA repair enzyme inhibitor for effects on androgen-dependent transcription. Results. Our data indicates that androgen signaling regulates a subset of DNA repair genes that are largely specific to the respective model system and disease state. We identified deleterious mutations in the DNA repair genes RAD50 and CHEK2. We found that inhibition of the DNA repair enzyme MRE11 with the small molecule mirin inhibits androgen-dependent transcription and growth of prostate cancer cells. Conclusions. Our data supports the view that crosstalk between androgen signaling and DNA repair occurs at multiple levels, and that DNA repair enzymes in addition to PARPs, could be actionable targets in prostate cancer.
Project description:Great efforts have been made to identify key molecular aberrations that sustain growth and confer resistance to androgen deprivation therapy (ADT) in advanced prostate cancer (PC), and yet PC remains a lethal disease. Recent years have witnessed the discovery of several master regulator transcription factors that enhance lethal PC aggressiveness and provide actionable targets that may improve patient survival. Here we explore the role of the microphthalmia transcription factor (MITF) in lethal prostate cancer. To identify the mechanisms through which MITF mododulates prostate cancer aggressiveness, we knock-down MITF in three prostate cancer cell lines to identify the MITF regulated effector gene network contributing to lethal prostate cancer. Methods: We compared global transcription of three prostate cancer cell lines transduced with a siRNA control and 2 siRNAs targetting MITF by RNAseq. Results: RNA-seq of MITF knockdown prostate cancer cells uncovered a trasncriptional network of MITF regulated genes Conclusions: MITF regulates a discrette gene network that contributes to prostate cancer aggressiveness