Project description:Comparison between groups of monozygotic (MZ) and dizygotic (DZ) twins enables an estimation of the relative contribution of genetic, shared and non-shared environmental factors to phenotypic variability. Using DNA methylation profiling of ~20,000 CpG sites as a phenotype, we have examined discordance levels in multiple tissues in neonatal twins. MZ twins exhibit a wide range of within-pair differences at birth, but show discordance levels generally lower than DZ pairs. Within-pair methylation discordance was lowest in CpG islands in all twins and increased as a function of distance from islands. This was largely independent of distance from transcriptional start site in promoters without CpG islands. Variance component decomposition analysis of DNA methylation in MZ and DZ pairs revealed a low mean heritability across all tissues, although a wide range of heritabilities was detected for specific genomic CpG sites. The largest component of variation was attributed to the combined effects of non-shared intrauterine environment and stochastic factors. Regression analysis of methylation on birth weight revealed a general association between methylation of genes involved in metabolism and biosynthesis, providing further support for epigenetic change in the previously described link between low birth weight and increasing risk for cardiovascular, metabolic and other complex diseases. Finally, comparison of our data with that of several older twins, revealed little evidence for genome-wide epigenetic drift with increasing age. This is the first study to analyse DNA methylation on a genome scale in twins at birth, further highlighting the importance of the intrauterine environment on shaping the neonatal epigenome. Data from cord blood mononuclear cells (CBMCs), human umbilical vascular endothelial cells (HUVECs) and placenta from 22 MZ and 11 DZ pairs with one replicate sample
Project description:Comparison between groups of monozygotic (MZ) and dizygotic (DZ) twins enables an estimation of the relative contribution of genetic, shared and non-shared environmental factors to phenotypic variability. Using DNA methylation profiling of ~20,000 CpG sites as a phenotype, we have examined discordance levels in multiple tissues in neonatal twins. MZ twins exhibit a wide range of within-pair differences at birth, but show discordance levels generally lower than DZ pairs. Within-pair methylation discordance was lowest in CpG islands in all twins and increased as a function of distance from islands. This was largely independent of distance from transcriptional start site in promoters without CpG islands. Variance component decomposition analysis of DNA methylation in MZ and DZ pairs revealed a low mean heritability across all tissues, although a wide range of heritabilities was detected for specific genomic CpG sites. The largest component of variation was attributed to the combined effects of non-shared intrauterine environment and stochastic factors. Regression analysis of methylation on birth weight revealed a general association between methylation of genes involved in metabolism and biosynthesis, providing further support for epigenetic change in the previously described link between low birth weight and increasing risk for cardiovascular, metabolic and other complex diseases. Finally, comparison of our data with that of several older twins, revealed little evidence for genome-wide epigenetic drift with increasing age. This is the first study to analyse DNA methylation on a genome scale in twins at birth, further highlighting the importance of the intrauterine environment on shaping the neonatal epigenome.
Project description:Epigenetic profiling of birth-weight discordant twins using Illumina's 450K Human DNA methylation BeadChip Comparing DNA methylation difference in birth-weight discordant twin pairs
Project description:Background: Low birth weight is associated with an increased adult metabolic disease risk. It is widely discussed that poor intrauterine conditions could induce long-lasting epigenetic modifications, leading to systemic changes in regulation of metabolic genes. In a unique cohort of 17 monozygotic (MZ) monochorionic female twins very discordant for birth weight (relative differences ranging from 21.3-35.7%), we examined if adverse prenatal growth conditions experienced by the smaller co-twins lead to systemic long-lasting DNA methylation changes. Genome-wide DNA methylation profiles were acquired from saliva DNA using the Infinium HumanMethylation450 BeadChip, targeting ~2% of all CpGs in the genome. Results: Overall, co-twins showed very similar genome-wide DNA methylation profiles. Since observed differences were almost exclusively caused by variable cellular composition, an original marker-based adjustment strategy was developed to eliminate such variation at affected CpGs. Among adjusted and unchanged CpGs 3153 were differentially methylated between the heavy and light co-twins at nominal significance (p<0.01), of which 45 showed absolute mean β-value differences >0.05 (max=0.08). Deep bisulfite sequencing of eight such loci revealed that differences remained in the range of technical variation, arguing against a reproducible biological effect. Analysis of methylation in repetitive elements using methylation-dependent primer extension assays also indicated no significant intra-pair differences. Conclusions: Severe intrauterine growth differences observed within these MZ twins are not associated with long-lasting DNA methylation differences in cells composing saliva, detectable with up-to-date technologies. Additionally, our results indicate that uneven cell type composition can lead to spurious results and should be addressed in epigenomic studies. DNA methylation profiles of saliva from 17 Adult Female MZ MC Twins discordant for birth weight.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.