Project description:The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome, biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidy. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidy is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in eye development and phototransduction was decreased in both knockdown conditions, suggesting that both may impair eye development and function. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance during vertebrate embryonic development. A-optimal design. Experimental design, D1D2MO vs SCMO and D3MO vs SCMO. Biological replicates: 4 SCMO, 4 D1D2MO, 4 D3MO
Project description:The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome, biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidy. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidy is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in eye development and phototransduction was decreased in both knockdown conditions, suggesting that both may impair eye development and function. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance during vertebrate embryonic development. A-optimal design. Experimental design, D1D2MO vs SCMO and D3MO vs SCMO. Biological replicates: 4 SCMO, 4 D1D2MO, 4 D3MO
Project description:The embryonic zebrafish is an ideal system for lipid analyses with relevance to many areas of bioscience research, including biomarkers and therapeutics. Research in this area has been hampered by difficulties in extracting, identifying and quantifying lipids. We employed 1H-NMR at 700MHz to profile lipids in developing zebrafish embryos. The optimal method for lipidomics in embryonic zebrafish incorporated rapid lipid extraction using chloroform and an environment without oxygen depletion. Pools of 10 embryos gave the most acceptable signal-to-noise ratio, and the inclusion of chorions in the sample had no significant effect on lipid abundances. Embryos, bisected into cranial (head and yolk sac) and caudal (tail) regions, were compared by principal component analysis and analysis of variance.
Project description:This dataset comprises bulk RNA sequencing of 45 samples isolated from adult female L. sclopetarius spiders. The samples include spider abdomen (5 replicates), head (5), major ampullate glands (5), minor ampullate glands (5), aggregate glands (5), tubuliform glands (3), and major ampullate gland cut into three parts, i.e., tail (6), sac (6) and duct (5).
Project description:The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome, biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidy. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidy is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in eye development and phototransduction was decreased in both knockdown conditions, suggesting that both may impair eye development and function. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance during vertebrate embryonic development.
Project description:The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome, biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidy. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidy is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in eye development and phototransduction was decreased in both knockdown conditions, suggesting that both may impair eye development and function. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance during vertebrate embryonic development.
Project description:The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome, biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidy. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidy is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in eye development and phototransduction was decreased in both knockdown conditions, suggesting that both may impair eye development and function. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance during vertebrate embryonic development.