Project description:KAP1 is overexpressed in breast cancer. To determine KAP1 regulated genes, we performed microarray analysis of gene expression in KAP1 depleted breast cancer cells MDA-MB-231LN. The transcriptional regulator TRIM28/KAP1 plays an important role in development, stem cell self-renewal, chromatin organization and the DNA damage response. KAP1 is an essential co-repressor for KRAB zinc finger proteins (KRAB-ZNFs). Though KRAB-ZNFs represent the largest family of human transcription factors, their biological functions are largely unknown. Using the conserved zinc fingers linker region (ZnFL) as antigen, we have developed a ZnFL antibody that recognizes multiple KRAB-ZNFs. We showed that KAP1 and many KRAB-ZNFs were overexpressed in human breast cancers and breast cancer cell lines. In addition, an active SUMOylated form of KAP1 was markedly increased in breast cancer cells. Furthermore, KAP1 depletion in breast cancer cell lines reduced cell proliferation and inhibited tumor growth and metastasis of tumor xenografts. Conversely, KAP1 overexpression stimulated cell proliferation and tumor growth. KAP1 knockdown led to down-regulation of genes previously linked to tumor progression and metastasis, including PTGS2/COX2, EREG, CD44, MMP1 and MMP2. Interestingly, KAP1 depletion or genomic deletion led to dramatic down-regulation of multiple KRAB-ZNF proteins due in part to their increased degradation. KAP1-dependent stabilization of KRAB-ZNFs required a direct KRAB-ZNF-KAP1 interaction. These results establish KAP1 as a positive regulator of multiple KRAB-ZNFs and an important factor in the development of breast cancer. 7 total samples were analyzed. Stable sublines of MDA-MB-231LN cells expressing control non-targeting shRNA (Scr, 3 biological replicates) and two different shRNAs against KAP1 (KAP1-3, 2 biological replicates and KAP1-4, 2 biological replicates) from doxycycline-inducible pTRIPZ vector were cultured in the presence of 0.5 ug/ml doxycycline for 7 days to induce shRNA expression. Cells were lysed and total RNA was isolated using mirVana miRNA isolation kit (Ambion) in the WVU Genomics Core Facility.
Project description:KAP1 (TRIM28) is a transcriptional regulator in embryonic development that controls stem cell self-renewal, chromatin organization and the DNA damage response, acting as an essential co-repressor for KRAB family zinc finger proteins (KRAB-ZNF). To gain insight into the function of this large gene family, we developed an antibody that recognizes the conserved zinc fingers linker region (ZnFL) in multiple KRAB-ZNF. Here we report that the expression of many KRAB-ZNF along with active SUMOlyated KAP1 is elevated widely in human breast cancers. KAP1 silencing in breast cancer cells reduced proliferation and inhibited the growth and metastasis of tumor xenografts. Conversely, KAP1 overexpression stimulated cell proliferation and tumor growth. In cells where KAP1 was silenced, we identified multiple downregulated genes linked to tumor progression and metastasis, including EREG/epiregulin, PTGS2/COX2, MMP1, MMP2 and CD44, along with downregulation of multiple KRAB-ZNF proteins. KAP1-dependent stabilization of KRAB-ZNF required direct interactions with KAP1. Together, our results show that KAP1-mediated stimulation of multiple KRAB-ZNF contributes to the growth and metastasis of breast cancer.
Project description:LMTK3 is an oncogenic receptor tyrosine kinase (RTK) implicated in various types of cancer including breast, lung, gastric and colorectal. It is localized in different cellular compartments but its nuclear function has not been investigated thus far. We have mapped LMTK3 binding across the genome using ChIP-seq and found that LMTK3 binding events are correlated with repressive chromatin markers. We further identified KRAB associated protein-1 (KAP1) as a novel binding partner of LMTK3. The LMTK3/KAP1 interaction is stabilized by PP1_, which suppresses KAP1 phosphorylation specifically at LMTK3-associated chromatin regions, inducing chromatin condensation and resulting in transcriptional repression of LMTK3-bound tumour suppressor-like genes. Furthermore, LMTK3 functions at enhancer regions in tethering the chromatin to the nuclear periphery, resulting in H3K9me3 modification and gene silencing. In summary, we propose a new model where a scaffolding function of nuclear LMTK3 promotes cancer progression through chromatin remodeling, revealing a new mechanism of RTK activity. Examination of LMTK3 binding profile in 2 cell types.
Project description:LMTK3 is an oncogenic receptor tyrosine kinase (RTK) implicated in various types of cancer including breast, lung, gastric and colorectal. It is localized in different cellular compartments but its nuclear function has not been investigated thus far. We have mapped LMTK3 binding across the genome using ChIP-seq and found that LMTK3 binding events are correlated with repressive chromatin markers. We further identified KRAB associated protein-1 (KAP1) as a binding partner of LMTK3. The LMTK3/KAP1 interaction is stabilized by PP1α, which suppresses KAP1 phosphorylation specifically at LMTK3-associated chromatin regions, inducing chromatin condensation and resulting in transcriptional repression of LMTK3-bound tumour suppressor-like genes. Furthermore, LMTK3 functions at enhancer regions in tethering the chromatin to the nuclear periphery, resulting in H3K9me3 modification and gene silencing. In summary, we propose a model where a scaffolding function of nuclear LMTK3 promotes cancer progression through chromatin remodeling, revealing a previously undescribed mechanism of RTK activity.