Project description:Genomic assembly of trematode Trichobilharzia regenti, as part of the 50 Helminth Genomes Initiative sequencing of the parasitic worms that have the greatest impact on human, agricultural and veterinary disease and cause significant global health issues particularly in the developing world, or those used as model organisms.
Project description:Genomic assembly of trematode Trichobilharzia szidati, as part of the 50 Helminth Genomes Initiative sequencing of the parasitic worms that have the greatest impact on human, agricultural and veterinary disease and cause significant global health issues particularly in the developing world, or those used as model organisms.
Project description:BACKGROUND:Cercarial dermatitis is known as an endemic parasitic disease in North of Iran, a hypersensitive skin reaction to the penetration of nonhuman schistosome larvae into human skin. In recent studies in this region, final and intermediate hosts were recognized and Trichobilharzia was identified as the main causative agent of cercarial dermatitis in this region, but to date the parasite species haven't been identified. Therefore this study was performed to species identification of nasal Trichobilharzia in infected birds for the first time. METHODS:A total of 45 Anas clypeata birds identified as final host, were collected from Sari in North of Iran and infected nasal tissues analyzed using molecular techniques. Genomic DNA was isolated by phenol/chloroform extraction method and ITS region of rDNA were amplified with specific primers its5Trem and its4Trem, then sequenced area were compared with existing records in GenBank. RESULTS:Twelve samples were infected with Trichobilharzia and results of PCR reaction indicated that all of them belonged to T. regenti. The sequence alignment of present work isolates and those deposited in GenBank showed differences in nucleotide sequences of repeat region in ITS1. CONCLUSION:Trichobilharzia regenti is the most frequent parasite of Anatid birds in North of Iran. This corresponds to the distribution of this parasite along the flyway of migratory birds, which annually migrate from Siberia and northern countries of Caspian Sea to wintering areas in southern regions of it.
Project description:In the present study, the complete mitochondrial genome of T. szidati was assembled by next generation sequencing (NGS). We found that the complete mitochondrial genome of T.szidati is 14, 303 bp in length and consists of 3023 (21.1%) adenine, 1153 (8.1%) cytosine, 3432 (24.0%) guanosine and 6695 (46.8%) thymine. The genome contains 12 conserved core protein-coding genes (atp6, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4L, nad5, nad6, CYTB), 21 tRNA genes, 2 rRNA genes and 1 D-loop region. Phylogenetic analysis showed that T. szidati has a close relationship with T. regent. Knowledge of mitochondrial genome of T. szidati could provide useful information for the further studies of evolutionary biology, epidemiology and species identification.
Project description:Trichobilharzia is a genus of threadlike schistosomes with a cosmopolitan distribution in birds. Species of Trichobilharzia achieve notoriety as major etiological agents of cercarial dermatitis, or swimmer's itch. There are 40 species described in the literature, for which the majority lacks molecular sequence information. To better understand the phylogenetic relationships, diversity, species boundaries, host use, and geographic distribution of this genus better, we surveyed 378 birds and over 10,000 snails from North America. The phylogenetic analysis was based on nuclear 18S, 28S rDNA, internal transcribed spacer region and mitochondrial cytochrome oxidase I sequence data. Specimens were recovered that could be related to 6 of the 14 described species of Trichobilharzia from North America (Trichobilharzia physellae, Trichobilharzia querquedulae, Trichobilharzia szidati, Trichobilharzia stagnicolae, Trichobilharzia franki, and Trichobilharzia brantae). An additional 5 lineages were found that could not be related directly to previously described species. Trichobilharzia brantae, transmitted by Gyraulus parvus, grouped outside the clade containing the recognized species of Trichobilharzia. A subgroup of the Trichobilharzia clade designated Clade Q was comprised of closely related species whose adults and eggs are similar, yet the European species use lymnaeids whereas the North American species use physids as snail hosts. This molecular phylogeny provides a useful framework (1) to facilitate identification of worms, including those involved in dermatitis outbreaks; (2) to test hypotheses about the evolution, diversification, host-parasite interactions and character evolution of Trichobilharzia; and (3) to guide future taxonomic revision of Trichobilharzia.
Project description:BackgroundCercarial dermatitis (swimmer's itch) caused by bird schistosome cercariae, released from intermediate host snails, is a common disorder also at higher latitudes. Several cases were observed in the artificial Danish freshwater Ringen Lake frequently used by the public for recreational purposes. The lake may serve as a model system when establishing a risk analysis for this zoonotic disease. In order to explain high risk periods we determined infection levels of intermediate host snails from early spring to late summer (March, June and August) and elucidated the effect of temperature and light on parasite shedding, behavior and life span.ResultsField studies revealed no shedding snails in March and June but in late summer the prevalence of Trichobilharzia szidati infection (in a sample of 226 pulmonate Lymnaea stagnalis snails) reached 10%. When investigated under laboratory conditions the cercarial shedding rate (number of cercariae shed per snail per day) was positively correlated to temperature raising from a mean of 3000 (SD 4000) at 7 °C to a mean of 44,000 (SD 30,000) at 27 °C). The cercarial life span was inversely correlated to temperature but the parasites remained active for up to 60 h at 20 °C indicating accumulation of cercariae in the lake during summer periods. Cercariae exhibited positive phototaxy suggesting a higher pathogen concentration in surface water of the lake during daytime when the public visits the lake.ConclusionThe only causative agent of cercarial dermatitis in Ringen Lake detected was T. szidati. The infection risk associated with aquatic activities is low during spring and early summer (March-June). In late summer the risk of infection is high since the release, behavior and life span of the infective parasite larvae have optimal conditions.