Project description:High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, we employed a microarray analysis with silique walls and seeds from the developing siliques (20 days after flowering) of Brassica napus that had undergone heat stress.
Project description:High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, we employed a microarray analysis with silique walls and seeds from the developing siliques (20 days after flowering) of Brassica napus that had undergone heat stress. Two-condition experiment, control vs heat stress, 2 time points
Project description:Understanding the regulation of lipid metabolism is vital for genetic engineering of Brassica napus (B. napus) to increase oil yield or modify oil composition. We report the application of Illumina Hiseq 2000 for transcriptome profiling of seeds of B. napus at different developmental stages, which may uncover the dynamic changes in lipid metabolism and reveal key genes involved in lipid biosynthesis and degradation. Total RNA from developing seeds at 2, 4, 6, and 8 weeks after pollination (WAP) were isolated and sequenced separately. The gene expression levels of all samples were quantified and normalized by the DESeq normalization. We found that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. Two genes, encoding for acetyl-CoA carboxylase and acyl-ACP desaturase, might be critical for fatty acid biosynthesis in oil rape seeds. This study provides insight into the mechanism underlying lipid metabolism and reveals candidate genes that are worthy of further investigation for their values in genetic engineering of B. napus. Whole Transcriptome profiling of developing Brassica napus seeds at 2, 4, 6, 8 WAP by RNA sequencing using Illumina HiSeq 2000.
Project description:Understanding the regulation of lipid metabolism is vital for genetic engineering of Brassica napus (B. napus) to increase oil yield or modify oil composition. We report the application of Illumina Hiseq 2000 for transcriptome profiling of seeds of B. napus at different developmental stages, which may uncover the dynamic changes in lipid metabolism and reveal key genes involved in lipid biosynthesis and degradation. Total RNA from developing seeds at 2, 4, 6, and 8 weeks after pollination (WAP) were isolated and sequenced separately. The gene expression levels of all samples were quantified and normalized by the DESeq normalization. We found that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. Two genes, encoding for acetyl-CoA carboxylase and acyl-ACP desaturase, might be critical for fatty acid biosynthesis in oil rape seeds. This study provides insight into the mechanism underlying lipid metabolism and reveals candidate genes that are worthy of further investigation for their values in genetic engineering of B. napus.
Project description:Transcriptomic study of the impact of osmopriming on rape seeds (Brassica napus L.; cv 'Libomir') during priming process and after germination. The assays were replicated twice on two independent priming and germination experiments. Seeds were osmoprimed in PEG solution (-1.2 MPa osmotic potential) during 7 days, dried to initial moisture content and then germinated for 7 hours on water. The analysis during different phases of priming procedure (soaking and drying), after whole osmopriming process and germination were done.
Project description:Transcriptomic study of the impact of osmopriming on rape seeds (Brassica napus L.; cv 'Libomir') during priming process and after germination. The assays were replicated twice on two independent priming and germination experiments. Seeds were osmoprimed in PEG solution (-1.2 MPa osmotic potential) during 7 days, dried to initial moisture content and then germinated for 7 hours on water. The analysis during different phases of priming procedure (soaking and drying), after whole osmopriming process and germination were done. 10 samples, four condition experiment; non dried primed seeds (Pnd) vs. dry unprimed seeds (UPd) (PEG soaking), non dried primed seeds (Pnd) vs dry primed seeds (Pd) (drying after soaking), dry primed seeds (Pd) vs. dry unprimed seeds (UPd) (full osmopriming process), primed seeds imbibed on water (P7h) vs unprimed seeds imbibed on water (UP7h) (germination after osmopriming). Biological replicates: 2 replicates for comparison PEG soaking, drying after soaking, full osmopriming process and germination after osmopriming.
Project description:Seeds of the German winter-type oilseed rape cultivar Express 617 were sampled and analysed at five key stages of seed development. Express 617 is a high oil yield cultivar with double-zero quality (low erucic acid and low glucosinolate content), which has been widely used in breeding programs and as parent for the creation of genetic mapping populations. Plants were grown under controlled, field-like conditions in the container-based system of the IPK PhenoSphere (Heuermann et al., 2023). The weather regime of the cultivation (2021/2021) was based on twelve years of hourly records of the weather station in Gatersleben and was designed to be as representative as possible of a typical growth season. Avoiding stressful weather extremes, the cultivation regime was considered to be favourable for plant growth and seed formation. Siliques were sampled at five key stages of seed development, as outlined by Borisjuk et al. (2013), covering the development from the pre-storage stage to seed maturation. To provide spatial information, seeds were manually dissected into four organs/tissues: the seed coat (SC), the inner (IC) and outer cotyledon (OC), and the radicle (RA). Aliquots of the pooled materials were subjected to mRNA-Sequencing and spectrometry–based proteomic analyses. Samples were prepared via the SP3 protocol and peptides were analysed on a timsTOF Pro mass spectrometer.
Project description:mRNA expression profiling of the embryo, endosperm (micropylar, peripheral, chalazal), and seed coat (outer, inner, chalazal, chalazal proliferating tissue) of the developing Brassica napus seed. Tissues were isolated using laser microdissection (LMD) from Brassica napus seeds at the globular, heart, and mature green stages of seed development.
Project description:Bacillus thuringiensis has insecticidal activity against a variety of important agricultural pests and exhibits good bacteriostatic resistance to a variety of plant pathogens, and recentily study have shown that two strains of Bt (B88-82 and RG1-6 Strain) can induce the tomato to produce resistance to R. solanacearum. However, only the induced signal pathway has been studied, and its active substances are not reported. The aim of this study was to further explore the Bt strain that could induce plant disease resistance and study the induced activity of the Bt strain, and to study the signal pathway induced by transcriptional sequencing and fluorescence quantitative PCR. The results showed that there were 303 differentially expressed genes in rape after induction of 4F5 strain, among which 86 genes were up-regulated and 217 genes weredown-regulated. The result of 4BM1 strain induction was induced by transcriptase sequencing. There were 126 differentially expressed genes in rape. Among which 64 genes were up-regulated and 62 genes were down-regulated. The analysis of these differentialexpression genes revealed that they contained Salicylic acid pathway and Ethylene pathway-related genes, which need to be further verified.