Project description:To reveal novel molecular factors behind the development of salivary gland cancer, we performed gene expression analyses from Smgb-Tag mouse salivary gland samples. The overall purpose was to apply these results for clinical use to find new approaches for both possible therapeutic targets and more accurate diagnostic tools in identification of salivary gland cancers. Smgb-Tag mouse strain, in which salivary neoplasms arise through a dysplastic phase in submandibular glands, was investigated using genome-wide microarray expression analysis, Ingenuity pathway analysis, RT-PCR, and immunohistochemistry. 3 normal, 3 dysplastic, and 3 adenocarcinomatous submandibular gland tumours of Smgb-Tag mice.
Project description:To reveal novel molecular factors behind the development of salivary gland cancer, we performed gene expression analyses from Smgb-Tag mouse salivary gland samples. The overall purpose was to apply these results for clinical use to find new approaches for both possible therapeutic targets and more accurate diagnostic tools in identification of salivary gland cancers. Smgb-Tag mouse strain, in which salivary neoplasms arise through a dysplastic phase in submandibular glands, was investigated using genome-wide microarray expression analysis, Ingenuity pathway analysis, RT-PCR, and immunohistochemistry.
Project description:We performed bulk RNA-sequencing analysis of human submandibular gland samples and then compared to expression of multiple human tissues in order to identify a salivary gland gene signature.
Project description:Gene expression analysis of spontenously immortalized mouse submandibular salivary gland epithelial cells grown in culture at different passages and in different media conditions
Project description:Salivary gland hypofunction is a common adverse effect during and after radiotherapy of head and neck cancers, resulting in the dry mouth syndrome called xerostomia. Previous studies suggested that the functionality of the salivary gland is under the regulation of the circadian clock, however, the extent and scope of this regulation remains unexplored. Here, we profiled the diurnal fluctuation of gene expression in the mouse submandibular salivary gland. We further analyzed the regulatory role of key circadian transcription factors Bmal1, Nr1d1 (Rev-erba), and Dbp, which revealed a wide range of potential down-stream target genes. The circadian clock was disrupted upon irradiation, as revealed by gene expression analysis. We propose that the mechanism of salivary gland hypofunction in radiotherapy involves perturbation of the circadian clock.
Project description:Ionizing radiation (IR) – induced salivary gland damage is a common adverse effect in radiotherapy for patients with head and neck cancers. Currently, there is no effective treatment for the resulting salivary gland hypofunction and xerostomia (dry mouth). Here we profiled the acute gene expression change in the mouse submandibular salivary gland, and defined its damage response patterns at the transcriptome level.
Project description:The submandibular salivary gland stroma makes up only a small portion of the total salivary gland and the stromal response to salivary gland injury has been understudied. We used single-cell RNA-sequencing (scRNAseq) to analyze which cell types are present in deligated and homeostatic salivary glands, how the cell type abundance is altered during regeneration, and how the transcriptome of those cells is being altered. This will allow us to examine which cell types are important contributors torecovery from salivary gland ductal ligation injury.
Project description:Rapamycin treatment of AKT induced salivary gland tumors Normal tissue (parotid and submandibular), untreated tumor tissue, and tumor tissue treated for 3/14 days
Project description:Salivary glands that produce and secret saliva, which is essential for lubrication, digestion, immunity, and oral homeostasis, consist of diverse cells. Maintenance of diverse salivary gland cells in organoids remains problematic. Here, we established human salivary gland organoids, which is composed of multiple cellular subsets, from 3 major salivary glands, including parotid gland (PG), submandibular gland (SMG), and sublingual gland (SLG). Human salivary gland organoids expressed gland-specific genes and proteins of acinar, myoepithelial, and duct cells. Organoids were maintained in growth media (named GEM) and further underwent differentiation in differentiation media (named DAM). Our study will provide an experimental platform for the exploration of mechanisms involvled in tissue regeneration, development, or several salivary gland diseases.