Project description:TCP transcription factors from the CYC2-class are involved in the development of monosymmetric flowers in all core eudicot species analysed so far. In Antirrhinum majus, the CYC2/TCP transcription factor CYCLOIDEA (CYC) is the molecular key regulator driving the development of flower monosymmetry (Luo D, Carpenter R, Vincent C, Copsey L, Coen E: Origin of floral asymmetry in Antirrhinum. Nature 1996, 383:794-799). In the Brassicaceae Iberis amara, a stronger expression of the CYC2 gene IaTCP1 in the small adaxial petals likely leads to the reduced petal size in comparison to large abaxial petals, with hardly any IaTCP1 expression. This results in the formation of the monosymmetric Iberis flower (Busch A, Zachgo S: Control of corolla monosymmetry in the Brassicaceae Iberis amara. PNAS 2007, 104:16714-16719). In contrast, the orthologous TCP/CYC2 transcription factor TCP1 from Arabidopsis thaliana, which forms equally sized and shaped petal pairs, only shows an early and transient expression in the adaxial area of floral primordia. This implies that monosymmetry in the Brassicaceae evolved through a heterochronic expression shift of the TCP/CYC2 key regulator gene IaTCP1. Transgenic Arabidopsis plants overexpressing IaTCP1 and TCP1 develop smaller petals whereas transgenic plants overexpressing CYC from Antirrhinum majus produce larger flowers. In any case, petal size is affected. To compare the effects of the three CYC2 TCP transcription factors on downstream (regulatory) networks in Arabidopsis thaliana, a microarray analysis was conducted.
Project description:TCP transcription factors from the CYC2-class are involved in the development of monosymmetric flowers in all core eudicot species analysed so far. In Antirrhinum majus, the CYC2/TCP transcription factor CYCLOIDEA (CYC) is the molecular key regulator driving the development of flower monosymmetry (Luo D, Carpenter R, Vincent C, Copsey L, Coen E: Origin of floral asymmetry in Antirrhinum. Nature 1996, 383:794-799). In the Brassicaceae Iberis amara, a stronger expression of the CYC2 gene IaTCP1 in the small adaxial petals likely leads to the reduced petal size in comparison to large abaxial petals, with hardly any IaTCP1 expression. This results in the formation of the monosymmetric Iberis flower (Busch A, Zachgo S: Control of corolla monosymmetry in the Brassicaceae Iberis amara. PNAS 2007, 104:16714-16719). In contrast, the orthologous TCP/CYC2 transcription factor TCP1 from Arabidopsis thaliana, which forms equally sized and shaped petal pairs, only shows an early and transient expression in the adaxial area of floral primordia. This implies that monosymmetry in the Brassicaceae evolved through a heterochronic expression shift of the TCP/CYC2 key regulator gene IaTCP1. Transgenic Arabidopsis plants overexpressing IaTCP1 and TCP1 develop smaller petals whereas transgenic plants overexpressing CYC from Antirrhinum majus produce larger flowers. In any case, petal size is affected. To compare the effects of the three CYC2 TCP transcription factors on downstream (regulatory) networks in Arabidopsis thaliana, a microarray analysis was conducted. The coding sequences of the TCP/CYC2 transcription factors IaTCP1, TCP1 and CYC were cloned into the pBAR vector (GenBank: AJ251014), resulting in the constructs #0522 (IaTCP1), #0569 (TCP1) and #0577 (CYC). In pBAR, all genes are under the control of the CaMV35S-promoter. Arabidopsis plants were transformed (via floral dip) with respective constructs and also with the empty vector (pBar). Transgenic plants (T1) with petal size deviation from the control (plants transformed with the empty vector and wild type) were selfed and resulting T2 lines with petal size deviations from control were selected. Inflorescence buds from secondary inflorescences were harvested from transgenic T2 plants that formed smaller (#0255 or #0569) or larger (#0577) petals in the main inflorescence. Total RNA was isolated and sent to the Integrated Functional Genomics Service at the University of Münster, Germany, which carried out probe preparation, hybridization and statistical analysis of the data. Differential gene expression was always determined from a comparison of gene expression from #0522, #0569 and #0577, respectively, against the control (#pBar; inflorescence gene expression in plants transformed with an empty vector).
Project description:Transcriptome sequencing information of citrus wax-related transcription factors CsMYB96 and CsMYB30 ectopically expressed in Arabidopsis thaliana
Project description:Mutations in the CINCINNATA gene in Antirrhinum and its orthologues in Arabidopsis cause negative surface curvature in leaves due to excess marginal growth. CIN-like genes code for TCP transcription factors and are expressed in a broad zone of a growing leaf somewhat distal to the proliferation zone. Although a few TCP targets are known, the role of CIN-like TCP genes in regulating leaf curvature has remained unclear. We have compared the global transcription profile of wild type and cincinnata mutant to identify its targets. By combining DNA-protein interaction, chromatin immunoprecipitation and RNA in situ hybridization, we show that CIN maintains surface flatness by regulating signaling or level of major plant hormones. CIN promotes cytokinin signaling directly and GA level indirectly, in accelerating maturity in leaf cells along the tip-to-base direction. In addition, CIN suppresses auxin signaling more at the margin than centre by establishing a margin-to-medial expression gradient of a homologue of the auxin suppressor IAA3. Our results uncover an underlying mechanism in a developing leaf that controls maturity of leaf and its surface curvature. Considering the conservation of CIN-like genes and their function in leaf morphogenesis in multiple plant species, it is likely that such mechanism is evolutionarily conserved. Two color Experiment, Organism: Arabidopsis thaliana and Antirrhinum. Arrays Used: 1. Agilent Arabidopsis thaliana Gene expression Microarray 22k (AMADID: 013324) 2. Agilent Custom Arabidopsis thaliana 4x44k Gene Expression (AMADID: 015226) 3. Agilent custom Antirrhinum 4x44k Gene expression (AMADID: 016341) designed by Genotypic Technology Private Limited.
Project description:This set consists of small RNAs sequenced from two replicates of wildtype and two replicates of RDR6-15 knockout Arabidopsis thaliana Col-0 leaf samples. RDR6 is required for the production of tasRNAs (trans-acting small RNAS) and so tags associated with the tasRNA loci should be severely down-regulated or absent in the knockout compared to wildtype. The set can thus be used as containing known true positives for testing differential expression detection methods.
Project description:This set consists of small RNAs sequenced from two replicates of wildtype and two replicates of RDR6-15 knockout Arabidopsis thaliana Col-0 leaf samples. RDR6 is required for the production of tasRNAs (trans-acting small RNAS) and so tags associated with the tasRNA loci should be severely down-regulated or absent in the knockout compared to wildtype. The set can thus be used as containing known true positives for testing differential expression detection methods. Examination of smRNA in 2 replicates wildtype and 2 replicates RDR6-15 knockout
Project description:Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly to suppress activity of a leaf margin meristem in Arabidopsis thaliana, and that their absence confers persistent marginal growth of leaves, cotyledons and floral organs. The marginal meristem is activated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, but other margin elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic from an ancestral shoot system from which seed plant leaves evolved.
Project description:Small RNA diversity and function has been widely characterized in various tissues of the sporophytic generation of the angiosperm model Arabidopsis thaliana. In contrast, there is limited knowledge about small RNA diversity and their roles in developing male gametophytes. We thus carried out small RNA sequencing on RNA isolated from four stages of developing Arabidopsis thaliana pollen. Spores from 4 stages of pollen development (UNM: Uninucleate microspore M-bM-^@M-^S BCP: Bicellular pollen M-bM-^@M-^S TCP: Tricellular pollen M-bM-^@M-^S MP: Mature pollen) were isolated using a percoll gradient-based method (Honys and Twell, 2004) and the small RNA fraction for each sample was isolated and sequenced by Illumina technology. Reference: Honys, D. and Twell, D. (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 5/11/R85.