Project description:Microbes are critical in carbon and nutrient cycling in freshwater ecosystems. Members of the Verrucomicrobia are ubiquitous in such systems, and yet their roles and ecophysiology are not well understood. In this study, we recovered 19 Verrucomicrobia draft genomes by sequencing 184 time-series metagenomes from a eutrophic lake and a humic bog that differ in carbon source and nutrient availabilities. These genomes span four of the seven previously defined Verrucomicrobia subdivisions and greatly expand knowledge of the genomic diversity of freshwater Verrucomicrobia. Genome analysis revealed their potential role as (poly)saccharide degraders in freshwater, uncovered interesting genomic features for this lifestyle, and suggested their adaptation to nutrient availabilities in their environments. Verrucomicrobia populations differ significantly between the two lakes in glycoside hydrolase gene abundance and functional profiles, reflecting the autochthonous and terrestrially derived allochthonous carbon sources of the two ecosystems, respectively. Interestingly, a number of genomes recovered from the bog contained gene clusters that potentially encode a novel porin-multiheme cytochrome c complex and might be involved in extracellular electron transfer in the anoxic humus-rich environment. Notably, most epilimnion genomes have large numbers of so-called "Planctomycete-specific" cytochrome c-encoding genes, which exhibited distribution patterns nearly opposite to those seen with glycoside hydrolase genes, probably associated with the different levels of environmental oxygen availability and carbohydrate complexity between lakes/layers. Overall, the recovered genomes represent a major step toward understanding the role, ecophysiology, and distribution of Verrucomicrobia in freshwater. IMPORTANCE Freshwater Verrucomicrobia spp. are cosmopolitan in lakes and rivers, and yet their roles and ecophysiology are not well understood, as cultured freshwater Verrucomicrobia spp. are restricted to one subdivision of this phylum. Here, we greatly expanded the known genomic diversity of this freshwater lineage by recovering 19 Verrucomicrobia draft genomes from 184 metagenomes collected from a eutrophic lake and a humic bog across multiple years. Most of these genomes represent the first freshwater representatives of several Verrucomicrobia subdivisions. Genomic analysis revealed Verrucomicrobia to be potential (poly)saccharide degraders and suggested their adaptation to carbon sources of different origins in the two contrasting ecosystems. We identified putative extracellular electron transfer genes and so-called "Planctomycete-specific" cytochrome c-encoding genes and identified their distinct distribution patterns between the lakes/layers. Overall, our analysis greatly advances the understanding of the function, ecophysiology, and distribution of freshwater Verrucomicrobia, while highlighting their potential role in freshwater carbon cycling.
Project description:Stereotypic behavior (SB) is common in emotional stress-involved psychiatric disorders and is often attributed to glutamatergic impairments, but the underlying mechanisms are unknown. To challenge the causal involvement of cholinergic neuromodulation in SB, we studied TgR mice with impaired cholinergic transmission due to over-expression of the stress-inducible soluble ‘readthrough’ acetylcholinesterase-R (AChE-R) variant. RNA-sequencing revealed 37 differentially expressed microRNAs in TgR mice hippocampi, 8 of which targeting over 5 human cholinergic-related transcripts each. Further, microarray tests of TgR prefrontal cortices displayed up to 428 long RNA transcripts differentially expressed from those of FVB/N mice, primarily glutamatergic-related mRNA transcripts (P<1x10-3). Suggesting behavioral relevance, TgR brains presented c-fos over-expression at motor behavior-regulating brain regions and immune-labeled AChE-R excess in SB-regulating basal ganglia, limbic brain nuclei and the brain stem. Compatible with this, TgR mice showed impaired organization of behavior, performance errors in a serial maze test, escape-like locomotion and less rearing under changed environmental familiarity/novelty conditions. Our findings attribute stress-induced SB to previously unknown microRNA-mediated perturbation of cholinergic/glutamatergic networks, support malfunctioning hierarchical control of cholinergic signaling as impairing the behavioral inhibitory regulation via glutamatergic neuromodulation and underscore new therapeutic strategies for correcting stereotypic behaviors.
Project description:The phylum Verrucomicrobia contains freshwater representatives which remain poorly studied at the genomic, taxonomic, and ecological levels. In this work we present eighteen new reconstructed verrucomicrobial genomes from two freshwater reservoirs located close to each other (Tous and Amadorio, Spain). These metagenome-assembled genomes (MAGs) display a remarkable taxonomic diversity inside the phylum and comprise wide ranges of estimated genome sizes (from 1.8 to 6 Mb). Among all Verrucomicrobia studied we found some of the smallest genomes of the Spartobacteria and Opitutae classes described so far. Some of the Opitutae family MAGs were small, cosmopolitan, with a general heterotrophic metabolism with preference for carbohydrates, and capable of xylan, chitin, or cellulose degradation. Besides, we assembled large copiotroph genomes, which contain a higher number of transporters, polysaccharide degrading pathways and in general more strategies for the uptake of nutrients and carbohydrate-based metabolic pathways in comparison with the representatives with the smaller genomes. The diverse genomes revealed interesting features like green-light absorbing rhodopsins and a complete set of genes involved in nitrogen fixation. The large diversity in genome sizes and physiological properties emphasize the diversity of this clade in freshwaters enlarging even further the already broad eco-physiological range of these microbes.
Project description:BackgroundAntibiotic resistance developed by bacteria is a significant threat to global health. Antibiotic resistance genes (ARGs) spread across different bacterial populations through multiple dissemination routes, including horizontal gene transfer mediated by bacteriophages. ARGs carried by bacteriophages are considered especially threatening due to their prolonged persistence in the environment, fast replication rates, and ability to infect diverse bacterial hosts. Several studies employing qPCR and viral metagenomics have shown that viral fraction and viral sequence reads in clinical and environmental samples carry many ARGs. However, only a few ARGs have been found in viral contigs assembled from metagenome reads, with most of these genes lacking effective antibiotic resistance phenotypes. Owing to the wide application of viral metagenomics, nevertheless, different classes of ARGs are being continuously found in viral metagenomes acquired from diverse environments. As such, the presence and functionality of ARGs encoded by bacteriophages remain up for debate.ResultsWe evaluated ARGs excavated from viral contigs recovered from urban surface water viral metagenome data. In virome reads and contigs, diverse ARGs, including polymyxin resistance genes, multidrug efflux proteins, and β-lactamases, were identified. In particular, when a lenient threshold of e value of ≤ 1 × e-5 and query coverage of ≥ 60% were employed in the Resfams database, the novel β-lactamases blaHRV-1 and blaHRVM-1 were found. These genes had unique sequences, forming distinct clades of class A and subclass B3 β-lactamases, respectively. Minimum inhibitory concentration analyses for E. coli strains harboring blaHRV-1 and blaHRVM-1 and catalytic kinetics of purified HRV-1 and HRVM-1 showed reduced susceptibility to penicillin, narrow- and extended-spectrum cephalosporins, and carbapenems. These genes were also found in bacterial metagenomes, indicating that they were harbored by actively infecting phages.ConclusionOur results showed that viruses in the environment carry as-yet-unreported functional ARGs, albeit in small quantities. We thereby suggest that environmental bacteriophages could be reservoirs of widely variable, unknown ARGs that could be disseminated via virus-host interactions. Video abstract.