Project description:Gold nanoparticle (AuâNP) oligonucleotide complexes hold considerable promise as an approach for manipulating intracellular gene regulation. We show that the uptake and intracellular fate of AuâNP oligonucleotide complexes is associated with endocytosis and signal transduction. A transcriptomeâwide functional analysis of gene expression implicated multiple signaling pathways specific for AuâNP oligonucleotide complexes. In primary immune cells, the complexes trigger the expression of proâinflammatory nonâchemotactic cytokines rather than the many IFNâstimulated genes critical for induction of the immune response to a microbial challenge. Concordant with these changes, exposure to AuâNP oligonucleotide complexes is also accompanied by marked activation of immune cells. This distinct gene expression profile is not replicated in the lineageârestricted 293T cell line. These findings provide insight into the functional significance of the recruitment of AuâNP oligonucleotide complexes to endocytic structures and highlight the need to study the systems effects of nanomaterials in a biologically relevant model. We investigated the effect of AuâNP antisense EGFP oligonucleotide complexes on the transcriptome by expression profiling of 293T cells under four conditions and PBMCs under six conditions plus HIV infection with the Affymetrix U133 Plus 2.0 microarray. To control for experimental variability, three of the six PBMC conditions (24â and 48âhours after AuâNP oligonucleotide complex treatment, and the negative control) were assayed independently a second time (biological replicates) so that 13 microarrays were hybridized in total. A different batch of AuâNP oligonucleotide complexes was used in the generation of the four 293T and three replicate PBMC samples, and the microarrays for these samples were processed separately.
Project description:During mammalian colonization and infection, microorganisms must be able to rapidly sense and adapt to changing environmental conditions including alterations in extracellular pH. The fungus-specific Rim/Pal signaling pathway is one process that supports microbial adaptation to alkaline pH. This cascading series of interacting proteins terminates in the proteolytic activation of the highly conserved Rim101/PacC protein, a transcription factor that mediates microbial responses that favor survival in neutral/alkaline pH growth conditions, including many mammalian tissues. We identified the putative Rim pathway proteins Rim101 and Rra1 in the human skin colonizing fungus Malassezia sympodialis. Targeted mutation of these proteins confirmed their role in M. sympodialis growth at higher pH. Additionally, comparative transcriptional analysis of the mutant strains compared to wild-type suggested mechanisms for fungal adaptation to alkaline conditions. These signaling proteins are required for optimal growth in a murine model of atopic dermatitis, a pathological condition associated with increased skin pH. Together these data elucidate both conserved and phylum-specific features of microbial adaptation to extracellular stresses.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River.
2016-08-02 | GSE85064 | GEO
Project description:Sulphate reducing and methanogenic biofilms under alkaline conditions Other
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. Three groups of samples, A, B and C. Every group has 3 replicates.
Project description:A metagenomic library of sea sediment metagenome containing 245,000 recombinant clones representing ~ 2.45 Gb of sea sediment microbial DNA was constructed. Two unique arsenic resistance clones, A7 and A12, were identified by selection on sodium arsenite containing medium. Clone A7 showed a six-fold higher resistance to arsenate [As(V)], a three-fold higher resistance to arsenite [As(III)] and significantly increased resistance to antimony [Sb(III)], while clone A12 showed increased resistance only to sodium arsenite and not to the other two metalloids. The clones harbored inserts of 8.848 Kb and 6.771 Kb, respectively. Both the clones possess A + T rich nucleotide sequence with similarity to sequences from marine psychrophilic bacteria. Sequence and transposon-mutagenesis based analysis revealed the presence of a putative arsenate reductase (ArsC), a putative arsenite efflux pump (ArsB/ACR) and a putative NADPH-dependent FMN reductase (ArsH) in both the clones and also a putative transcriptional regulatory protein (ArsR) in pA7. The increased resistance of clone A7 to As(V), As(III) and Sb(III) indicates functional expression of ArsC and ArsB proteins from pA7. The absence of increased As(V) resistance in clone A12 may be due to the expression of a possible inactive ArsC, as conserved Arg60 residue in this protein was replaced by Glu60, while the absence of Sb(III) resistance may be due to the presence of an ACR3p-type arsenite pump, which is known to lack antimony transport ability.