Project description:To interrogate the molecular pathways disrupted by Jak2V617F expression and/or Tet2 loss, Lin-negative, Sca-1-positive, c-kit-positive (LSK) hematopoietic progenitor cells were isolated from bone marrow of wild-type, Jak2V617F, Tet2-null or Jak2V617F/Tet2-null animals (n= 2-4 mice per group) and subjected to gene expression profiling.
Project description:The study was a comparison of gene expression using RNA-seq. We analyzed the stem and progenitor cells from WT and Vav-cre+ Tet2fl/fl Flt3-ITD (T2F3) mice. We isolated stem cells LSK (lin- sca+ kit+) and granulocyte-macrophage progenitors GMP (lin- sca- kit+ fcgr+ cd34+) cells from bone marrow. Comparisons were made across genotypes WT vs. T2F3 and cell types LSK vs. GMP. Comparison of WT and Tet2-/-Flt3ITD bone marrow stem and progenitor cells.
Project description:We performed RNA sequencing analyses of adult mouse bone marrow lineage-negative, Sca-1-positive, and c-kit-positive (LSK) hematopoietic stem/progenitor cell population. Especially, we investigated gene expression profiling of LSK cells before and after haloperidol treatment.
Project description:We performed RNA sequencing analyses of adult mouse bone marrow lineage-negative, Sca-1-positive, and c-kit-positive (LSK) multipotent progenitor cells in wildtype and Drd2 Drd3 double knockout mice
Project description:To evaluate the DNA methylation in LSK cells from the bone marrow of wildtype or Tet2/3 DKO mice. In order to address the impact of the loss of Tet2/3 proteins in DNA methylation in LSK cells, we compared by WGBS the methylome of wild and, Tet2/3 DKO LSK cells in bone marrow.
Project description:We found PAD4, which is one of the transcriptional co-regulator by histone modification, was highly expressed in lineage-, Sca-1+, c-kit+ (termed as LSK) cells of mouse bone marrow. To find the target genes which are regulated by PAD4 in LSK cells, we analyzed gene expression in PAD4-deficient mouse as compared with wild-type mouse.
Project description:The study was a comparison of gene expression using RNA-seq. We analyzed the stem and progenitor cells from WT and Vav-cre+ Tet2fl/fl Flt3-ITD (T2F3) mice. We isolated stem cells LSK (lin- sca+ kit+) and granulocyte-macrophage progenitors GMP (lin- sca- kit+ fcgr+ cd34+) cells from bone marrow. Comparisons were made across genotypes WT vs. T2F3 and cell types LSK vs. GMP.
Project description:Loss of polycomb-group gene Ezh2 causes activation of fetal gene signature in adult mouse bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs). Ezh2 directly represses fetal-specific let-7 target genes, including Lin28, thereby cooperates with let-7 microRNAs in silencing fetal gene signature in BM HSPCs. We purified Lineage-Sca-1+c-Kit+ (LSK) HSPCs from E14.5 FL and adult BM and subjected them to microarray analysis.
Project description:To identify genes that are influenced by the catalytic and non-catalytic functions of Tet2 in hematopoietic stem and progenitor cells (HSPCs), we analyzed the gene expression profiles of Tet2 catalytic mutant (Tet2 Mut), Tet2 knockout (Tet2 KO) and wild-type HSPCs (or LSK, Lin–Sca-1+c-Kit+) and multi-potent progenitor (or MPP, Lin–) cells by RNA-seq.
Project description:By tracing the VE-cadherin expression in the newborn bone marrow hematopoietic LSK (lineage minus/Sca-positive/Kit-positive) cells, we demonstrated that the late foetal/newborn BM hemogenic endothelial cells produce a small cohort of hematopoietic stem and progenitor cells (HSPCs) capable of circulating and colonizing the secondary haematopoietic organs. Phenotypic and functional analyses disclosed that BM endothelium-derived HSPCs are mainly Multipotent Progenitors (MPPs) and a few Hematopoietic Stem Cells. We used microarrays to detail the global programme of gene expression underlying the endothelial origin of LSK cells in the newborn bone marrow.