Project description:A variety of environmental factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. This involves the germline transmission of epigenetic information between generations. Exposure specific sperm epimutations have been previously observed. The current study was designed to investigate the potential role genetic mutations have in the process, using copy number variations (CNV). In the first (F1) generation following exposure negligible CNV were identified, but in the transgenerational F3 generation a significant increase in CNV were identified in the sperm. The genome-wide differential DNA methylation regions (epimutations) were correlated with the genome locations of the CNV. Observations indicate the environmental induction of the epigenetic transgenerational inheritance of sperm epimutations promotes genome instability such that genetic CNV mutations are acquired in later generations. A combination of epigenetics and genetics is suggested to be involved in the transgenerational phenotypes.
Project description:A variety of environmental factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. This involves the germline transmission of epigenetic information between generations. Exposure specific sperm epimutations have been previously observed. The current study was designed to investigate the potential role genetic mutations have in the process, using copy number variations (CNV). In the first (F1) generation following exposure negligible CNV were identified, but in the transgenerational F3 generation a significant increase in CNV were identified in the sperm. The genome-wide differential DNA methylation regions (epimutations) were correlated with the genome locations of the CNV. Observations indicate the environmental induction of the epigenetic transgenerational inheritance of sperm epimutations promotes genome instability such that genetic CNV mutations are acquired in later generations. A combination of epigenetics and genetics is suggested to be involved in the transgenerational phenotypes.
Project description:Generational Comparisons (F1 versus F3) of Vinclozolin Induced Epigenetic Transgenerational Inheritance of Sperm Differential DNA Methylation Regions (Epimutations) Using MeDIP-Seq
Project description:Several epigenome-wide association studies (EWAS) have been shown to identify epigenetic alterations (i.e., epimutations) associated with diseases. The sperm epimutations potentially involved in the transgenerational inheritance of specific pathologies have been identified. Transgenerational sperm epimutations associated with kidney, prostate, puberty, testis, obesity, and multiple pathologies have been identified for a variety of environmental toxicants including dioxin, plastics, pesticides, glyphosate, methoxychlor, atrazine, and jet fuel. The transgenerational sperm epimutations for exposure and disease-specific epimutations have been identified in these EWAS studies. The current study used the information from these previous toxicant-induced epigenetic transgenerational inheritance EWAS rat studies and adds a comparable control group, rats that have not been exposed to any particular toxicant. Two additional control groups were collected and are presented here.