Project description:Senescence is the last developmental phase of plant tissues, plant organs and, in the case of monocarpic senescence, entire plants. In monocarpic crops such as barley, it leads to massive remobilization of nitrogen (primarily from degradation of photosynthetic proteins) and other nutrients to developing seeds. Senescence has therefore a major impact on both yield and seed/grain quality. To further investigate this process, a proteomic comparison of flag leaves of late-senescing barley variety ‘Karl’ and a near-isogenic early-senescing line, ‘10_11’, was performed at 14 and 21 days past anthesis, using both two-dimensional gel-based and label-free quantitative mass spectrometry-based (‘shotgun’) proteomic techniques. Overall, this approach identified >9,000 barley proteins, and one-third of them were quantified. Analysis focused on proteins that were significantly (P-value ≤0.05; difference ≥1.5-fold) upregulated in early-senescing line ‘10_11’ as compared to ‘Karl’, as these may be functionally important for the senescence process. Many proteins in this group, including several membrane and intracellular receptors, glucanases, enzymes with possible roles in cuticle modification, classical pathogenesis-related proteins, membrane transporters and proteins involved in DNA repair, have likely or putative functions in plant pathogen defense. Additionally, several proteases and elements of the ubiquitin-proteasome system were upregulated in line ‘10_11’; these proteins may be involved in nitrogen remobilization, and in the regulation of both senescence and plant defense reactions. Together, our data shed new light, at the protein level, on the importance of plant defense reactions during senescence, on senescence regulation, and possibly on crosstalk between senescence regulation and plant-pathogen interaction.
Project description:We hypothesized that the genome segments of cultivated barley should show certain similarity with its ancestral wild barley. Instead of whole genome sequences, we employed RNA-Seq to investigated the genomic origin of modern cultivated barley using some representative wild barley genotypes from the Near East and Tibet, and representative world-wide selections of cultivated barley.
Project description:Hordeum vulgare is one of the first domesticated grains in the world and it has been reported that variations in the light environment have a substantial effect on barley plant development and biological processes. High-throughput RNA-Seq study was performed to investigate the complex transcriptome network required for photomorphogenesis in barley. Seedlings were grown in dark and light conditions and three biological replicates were sampled from each condition. Six libraries from poly-A rich mRNA fraction were subjected to 51bp single-end RNA-seq sequencing.
Project description:NILs containing five parental lines, three wild barley genotypes ssp. spontaneum: HID 4 (A), Iraq; HID 64 (B), Turkey; and HID 369 (C), Israel, one ssp. agriocrithon: HID 382(D)) and cv. Morex (ssp. vulgare, USA). Purpose: Variant calling to identifie markers associated with a awn length QTL on the distal part of chromosome 7HL
Project description:In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces.