Project description:Genomic assembly of trematode Dicrocoelium dendriticum, as part of the 50 Helminth Genomes Initiative sequencing of the parasitic worms that have the greatest impact on human, agricultural and veterinary disease and cause significant global health issues particularly in the developing world, or those used as model organisms.
Project description:Dicrocoeliosis is a worldwide parasitic disease of ruminants which affects the liver. In this current study, the phylogenic pattern of Dicrocoelium species in Iranian native sheep from three different geographical regions was investigated by investigating a 520 bp fragment of mitochondirial NAD1 gene. The analysis of the NAD1 oligo nucleotide sequences from 10 D. dendriticum (GenBank accession numbers: MG889399 to MG889408) revealed few non-significant differences, suggesting limited application for NAD1 gene as a biomarker for study of genetic variation in Dicrocoelium. The morphometrical study also showed a significant relationship for the several morphometric indices among the Dicrocoelium spp. isolates from different regions of Iran.
Project description:Extracellular vesicles (EVs) released by the helminths Dicrocoelium dendriticum and Fasciola hepatica are important modulators of the host immune response, contributing to the establishment of the infection. Monocytes and, in particular, macrophages are major regulators of the inflammatory response and are likely responsible for the phagocytosis of most of the parasite EVs. In this study, we isolated EVs from F. hepatica (FhEVs) and D. dendriticum (DdEVs) by size exclusion chromatography (SEC) and characterized them by nanoparticle tracking analysis, transmission electron microscopy and LC-MS/MS, and analyzed the cohort of proteins. The treatment of monocytes/macrophages with FhEVs, DdEVs or EV-depleted fractions from SEC, demonstrated species-specific effects of the EVs. In particular, FhEVs reduce the migratory capacity of monocytes and the analysis of the cytokine profile showed that they induce a mixed M1/M2 response, exerting anti-inflammatory properties in Lipopolysaccharide-activated macrophages. In contrast, DdEVs do not affect monocyte migration and seem to have pro-inflammatory properties. These results correlate with the differences in the life cycle of both parasites, suggesting different host immune responses. Only F. hepatica migrates to the bile duct through the liver parenchyma, driving the host immune response to heal deep erosions. Furthermore, the proteomic analysis of the macrophages upon FhEV treatment identified several proteins that might be involved in FhEV-macrophage interactions.
Project description:This study dealt with the morphological and molecular identification of Dicrocoelium flukes obtained from Japanese serow (Capricornis crispus) and sika deer (Cervus nippon centralis) in the twelve districts of Iwate Prefecture, Japan. Dicrocoelium dendriticum and D. chinensis were exclusively detected in the western, and coastal and eastern areas of Iwate Prefecture, respectively. This geographically distinct occurrence of the two Dicrocoelium species would be associated with the distribution of the final hosts, sika deer for D. chinensis and Japanese serow for D. dendriticum. This study also reports that Capricornis crispus is a new final host of D. chinensis.
| S-EPMC4221179 | biostudies-literature
Project description:RNA-seq of Dicrocoelium dendriticum infected and uninfected Formica aserva
Project description:BACKGROUND: A total number of 14 valid species of Diphyllobothrium tapeworms have been described in literature to be capable of causing diphyllobothriosis, with D. latum being the major causative agent of all human infections. However, recent data indicate that some of these infections, especially when diagnosed solely on the basis of morphology, have been identified with this causative agent incorrectly, confusing other Diphyllobothrium species with D. latum. Another widely distributed species, D. dendriticum, has never been considered as a frequent parasite of man, even though it is found commonly throughout arctic and subarctic regions parasitizing piscivorous birds and mammals. Recent cases of Europeans infected with this cestode called into question the actual geographic distribution of this tapeworm, largely ignored by medical parasitologists. METHODOLOGY AND RESULTS: On the basis of revision of more than 900 available references and a description and revision of recent European human cases using morphological and molecular (cox1) data supplemented by newly characterized D. dendriticum sequences, we updated the current knowledge of the life-cycle, geographic distribution, epidemiological status, and molecular diagnostics of this emerging causal agent of zoonotic disease of man. CONCLUSIONS: The tapeworm D. dendriticum represents an example of a previously neglected, probably underdiagnosed parasite of man with a potential to spread globally. Recent cases of diphyllobothriosis caused by D. dendriticum in Europe (Netherlands, Switzerland and Czech Republic), where the parasite has not been reported previously, point out that causative agents of diphyllobothriosis and other zoonoses can be imported throughout the world. Molecular tools should be used for specific and reliable parasite diagnostics, and also rare or non-native species should be considered. This will considerably help improve our knowledge of the distribution and epidemiology of these human parasites.