Project description:Transcription factor GATA1 binding in erythroblasts in the presence and absence of BET inhibitor JQ1, and BET protein BRD3 and BRD4 binding in erythroblasts in the presence and absence of GATA1. Inhibitors of Bromodomain and Extra-Terminal motif proteins (BETs) are being evaluated for the treatment of cancer and other diseases yet their physiologic mechanisms remain largely unknown. We used genomic and genetic approaches to examine BET function in a hematopoietic maturation system driven by GATA1, an acetylated transcription factor previously shown to interact with BETs. We found that while BRD3 occupied the majority of GATA1 binding sites, BRD2 and BRD4 were also recruited to a subset of GATA1-occupied sites. Functionally, BET inhibition impaired GATA1-mediated transcriptional activation, but not repression, genome-wide. Co-activation by BETs was accomplished both by facilitating genomic occupancy of GATA1 and subsequently supporting transcription activation. Using a combination of CRISPR/CAS9-mediated genomic engineering and shRNA approaches we observed that depletion of either BRD2 or BRD4 alone blunted erythroid gene activation, while depletion of BRD3 only affected erythroid transcription in the setting of BRD2 deficiency. These results suggest that pharmacologic BET inhibition should be interpreted in the context of distinct steps in transcriptional activation and partially overlapping functions among BET family members. GATA1 null erythroblasts (G1E) conditionally expressing GATA1 as a GATA1-ER fusion protein were induced to express GATA1 by addition of 100nM estradiol for 24 hours. For GATA1 binding experiments this occurred in the absence or presence of 250nM JQ1. For BRD3 and BRD4 occupancy experiments G1E cells were compared to G1E cells with activated GATA1-ER fusion protein.
Project description:Transcription factor GATA1 binding in erythroblasts in the presence and absence of BET inhibitor JQ1, and BET protein BRD3 and BRD4 binding in erythroblasts in the presence and absence of GATA1. Inhibitors of Bromodomain and Extra-Terminal motif proteins (BETs) are being evaluated for the treatment of cancer and other diseases yet their physiologic mechanisms remain largely unknown. We used genomic and genetic approaches to examine BET function in a hematopoietic maturation system driven by GATA1, an acetylated transcription factor previously shown to interact with BETs. We found that while BRD3 occupied the majority of GATA1 binding sites, BRD2 and BRD4 were also recruited to a subset of GATA1-occupied sites. Functionally, BET inhibition impaired GATA1-mediated transcriptional activation, but not repression, genome-wide. Co-activation by BETs was accomplished both by facilitating genomic occupancy of GATA1 and subsequently supporting transcription activation. Using a combination of CRISPR/CAS9-mediated genomic engineering and shRNA approaches we observed that depletion of either BRD2 or BRD4 alone blunted erythroid gene activation, while depletion of BRD3 only affected erythroid transcription in the setting of BRD2 deficiency. These results suggest that pharmacologic BET inhibition should be interpreted in the context of distinct steps in transcriptional activation and partially overlapping functions among BET family members.
Project description:Role of bromodomain and extra-terminal motif (BET) proteins in GATA1-null erythrolbasts (G1E) and in differentiation induced by activation of conditional GATA1 tested by addition of BET inhibitor JQ1 (250nM) Array protocols were conducted as described in the Ambion WT Expression Manual and the Affymetrix GeneChip Expression Analysis Technical Manual by the University of Pennsylvania Molecular Profiling Core.
Project description:Role of bromodomain and extra-terminal motif (BET) proteins in GATA1-null erythrolbasts (G1E) and in differentiation induced by activation of conditional GATA1 tested by addition of BET inhibitor JQ1 (250nM) Array protocols were conducted as described in the Ambion WT Expression Manual and the Affymetrix GeneChip Expression Analysis Technical Manual by the University of Pennsylvania Molecular Profiling Core. Two-factor design (+/- JQ1, +/- GATA1). External RNA spike-in controls (ERCC controls, Ambion) added to each sample in proportion to cell number at the time of RNA harvest.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Role of the bromodomain and extraterminal motif (BET) protein BRD2 in CTCF chromatin occupancy, tested by CRISPR/Cas9-mediated depletion of BRD2 in GATA1-null erythroblasts expressing an inducible GATA1-ER fusion (G1E-ER4). Pharmacologic inhibitors of the BET (bromodomain and extraterminal motif) family of proteins are being explored for the treatment of various diseases, including cancer, yet the individual functions of BET proteins remain unclear. Here we find that BRD2 co-localizes with the architectural/insulator protein CCCTC-binding factor (CTCF) genome-wide. CTCF recruits BRD2 to co-bound sites, whereas BRD2 is dispensable for CTCF occupancy. Genome editing at a CTCF/BRD2 co-occupied site reveals a functional boundary element that upon perturbation results in transcriptional misregulation. Single-molecule RNA FISH reveals that either site-specific CTCF loss or BRD2 depletion increases the correlation in expression of two genes flanking the boundary. Together these findings indicate that BRD2 supports chromatin boundary activity in a CTCF-dependent manner and suggest that pharmacologic BET inhibitors influence gene expression in part by perturbing chromatin domain boundary function.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.