Project description:IscR is a novel global regulator potentially contributing to the overall success in survival and pathogenesis of V. vulnificus by coordinating the regulation of various virulence factors. The profiles of transcripts from the V. vulnificus iscR mutant and the parental wild type were compared by using a V. vulnificus whole-genome microarray.
Project description:The profiles of transcripts from the planktonic cells and biofilm cells of V. vulnificus were compared by using a V. vulnificus whole-genome microarray
Project description:Dual transcriptome analysis of the V. vulnificus-infected human cells; To understand toxin-stimulated host-pathogen interactions, we set up dual transcriptome sequencing experiments using the human epithelial (HT-29) or immune (differentiated THP-1; dTHP-1) cells infected with the sepsis-causing pathogen Vibrio vulnificus, either in wild-type or the MARTX toxin-deficient backgrounds.
Project description:IscR is a novel global regulator potentially contributing to the overall success in survival and pathogenesis of V. vulnificus by coordinating the regulation of various virulence factors. The profiles of transcripts from the V. vulnificus iscR mutant and the parental wild type were compared by using a V. vulnificus whole-genome microarray. Two-condition experiment: Wild type vs. iscR mutant. Biological replicates: 3 control, 3 mutant strains, independently grown and harvested. One replicate per array. For transcriptome analysis, the V. vulnificus whole genome TwinChip, manufactured and kindly provided by the 21C Frontier Microbial Genomics and Applications Center (Daejeon, South Korea), was used.
Project description:Vibriosis caused by Vibrio vulnificus on eels represents an important threat for this specie under culture conditions. Development of new transcriptomic tools is essential to increase the knowledge of eel biology, that nowadays is scarcer. Therefore, using previous results obtained by 454 sequencing of the eel immune-enriched transcriptome, an eel-specific custom microarray have been designed. Gills transcriptomic pattern were analyzed as a principal portal of entry for pathogens in fish after 1h of bath infection with Vibrio vulnificus to describe gill immune response. Moreover, two different strains were used, vibro vulnificus wild type (R99) and rtx double mutant (CT285), to asses the virulence of these pathogen caused by MARTX.
Project description:The profiles of transcripts from the planktonic cells and biofilm cells of V. vulnificus were compared by using a V. vulnificus whole-genome microarray Two-condition experiment, planktonic cells vs. biofilm cells. Biological replicates: 3 control, 3 experimental, independently grown and harvested. One replicate per array. For transcriptome analysis, the V. vulnificus whole genome TwinChip, manufactured and kindly provided by the 21C Frontier Microbial Genomics and Applications Center (Daejeon, South Korea), was used.
Project description:Small octopus is one of the major source for V. vulnificus outbreak among aquatic products in Northeast Asian due to improperly cooking and wound infection by mishandling. However, there is no report on whole genome sequence of V. vulnificus isolated from contaminated surf clam, thus no information is available for major virulence factors about V. vulnificus obtained from small octopus. Therefore, the analysis of transcriptome of isolated V. vulnificus from products are necessary to investigate potential risk of foodborne illness by contaminated products.