Project description:Epithelial appendages are the product of epithelial – mesenchymal interactions. Tissue recombination experiments showed that in general, the dermis determines the phenotype of the epithelial appendage. Chicken dorsal skin epithelium interacts with its underlying mesenchyme to form feathers beginning at E7 (H&H stage 31), while metatarsal scale epithelium interacts with its mesenchyme to form scales beginning at E9 (H&H stage 35) which stabilize around E12 (H&H stage 38). We sought to evaluate the molecular differences of tissues with different competence and inductive abilities to form feathers and scales. Chicken embryos were selected to obtain competent E7 and non-competent at E9 feather forming skin from dorsal. The competent E9 and non-competent E11 meta-tarsal scale forming skin from metatarsal were selected for examing the differences in regional specificity. Epithelium and mesenchyme from each skin were prepared separately. Samples were prepared for RNA extraction and hybridization on Affymetrix microarrays. We gathered 8 sets of samples for the analysis: undifferentiated E7 feather skin epithelium (E7fe) and mesenchyme (E7fm); differentiated E9 feather skin epithelium (E9fe) and mesenchyme (E9fm); undifferentiated E9 scale skin epithelium (E9se) and mesenchyme (E9sm); and differentiated E11 scale skin epithelium (E11se) and mesenchyme (E11sm)
Project description:Feather evolution enabled feathered dinosaurs and early Mesozoic birds to venture into new ecological niches. Studying how feathers and scales are specified provides insight into how a new organ evolves. We use genome-wide analyses to identify feather-associated genes and test their feather-forming ability by expressing them in chicken and alligator scales. Intermediate morphotypes revealed five cardinal morphogenetic events: localized growth zone, follicle invagination, branching, feather keratin differentiation and dermal papilla formation. In contrast to molecules known to induce feathers on scales (retinoic acid, beta-catenin), we identify novel scale-feather converters (Sox2, Zic1, Grem1, Spry2, Sox18) which induce only one or several of the five regulatory modules. Some morphotypes resemble filamentous appendages found in feathered dinosaur fossils, while others demonstrate some characteristics of modern feathers. We propose that at least five morpho-regulatory modules were used to diversify ancient reptile scales. The regulatory combination and hierarchical integration led to extant feather forms.