Project description:We present a genome assembly from an individual female Sympetrum striolatum (the Common Darter; Arthropoda; Insecta; Odonata; Libellulidae). The genome sequence is 1349.6 megabases in span. Most of the assembly is scaffolded into 12 chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 16.16 kilobases in length.
Project description:Dragonfly wings resist millions of cycles of dynamic loading in their lifespan. During their operation, the wings are subjected to relatively high mechanical stresses. They further experience accidental collisions which result from the insects' daily activities, such as foraging, mating and fighting with other individuals. All these factors may lead to irreversible wing damage. Here, for the first time, we collected qualitative and quantitative data to systematically investigate the occurrence of damage in dragonfly wings in nature. The results obtained from the analysis of 119 wings from >30 individual Sympetrum vulgatum (Anisoptera: Libellulidae), collected at the second half of their flight period, indicate a high risk of damage in both fore- and hindwings. Statistical analyses show no significant difference between the extent of damage in fore- and hindwings, or between male and female dragonflies. However, we observe a considerable difference in the probability of damage in different wing regions. The wing damage is found to mainly result from two failure modes: wear and fracture.